A low power 1U Raspberry Pi cluster server for inexpensive colocation.

Overview

Raspberry Pi 1U Server

There are server colocation providers that allow hosting a 1U server for as low as $30/month, but there's a catch: There are restrictions on power usage (1A @ 120v max, for example) because they're expecting small and power-efficient network equipment like firewalls.

This repo is about designing a server that fits within the 1U space and 1A @ 120v power constraint while maximizing computing power, storage, and value.

raspberry pi 1u server - inside raspberry pi 1u server - front raspberry pi 1u server - back

Table of contents

Colocation Providers

  • $30/month - Turnkey Internet
    • 1 Amp @ 120V
    • 1 Usable IP (+$10 for 5 usable IPs)
    • 10 Mbit Ethernet
    • 3 TB Monthly Transfer
  • $40/month - Nextarray
    • 100Mbps Unmetered
    • 1 Amps 120V
    • 3 Usable IPs (+$13 for 11 usable IPs)
    • GigE Port
    • 1.5Tbps Protection
    • Location: Dallas, TX
  • $50/month - Joe’s Datacenter
    • 5 Usable IPs
    • Bandwidth: 33TB on 1Gbps Port
    • Power: Up To 2 Amps 120V (Single Power Connection)
    • Network Connection: Single Network Cable
    • Location: Kansas City, MO

Parts

Specs Summary

  • 20x 1.5GHz CPU cores
  • 16GB LPDDR4-3200 SDRAM
  • 1.2TB SSD Storage
  • Gigabit Ethernet

Total cost: ~$800

1U Chassis

Storage

Storage Enclosure

Switch

Single Board Computer

Raspberry Pi Case

  • 5x $12.99 - Geekworm Raspberry Pi 4 Armor Case
    • Allows access to GPIO pins, which will be necessary for the Pi wired to the relay for remote power management.
    • Uses less space than the Flirc case, which makes it difficult to close the chassis lid.
    • Reviews: 1

Power

Remote Power Management

Other Wiring

Power Usage

  • Raspberry Pi 4 + SSD:
    • idle: 2.2W, 0.44A @ 5V (0.018A @ 120v)
    • load: 4.2W, 0.84A @ 5V (0.035A @ 120v)
  • Total w/ blower fan on low setting:
    • idle: 36-38.4W, 0.30-32A @ 120V
    • load: 43.2W, 0.36A @ 120V
  • Total w/ blower fan on high setting:
    • idle: 48W, 0.4A @ 120V

Software Setup

You will need to do this for each of the Raspberry Pi's:

  1. Flash an SD card with Raspbian Lite (under "Raspberry Pi OS (other)" in the Raspberry Pi Imager) and enable SSH with:
    1. cd /Volumes/boot/
    2. touch ssh
  2. Insert the SD card into the Pi, power on, and ssh into the Pi with ssh pi@ and the password "raspberry".
  3. Update the hostname to correspond to the number on the case:
    1. sudo raspi-config
    2. 1 System Options -> S4 Hostname -> Update hostname -> Finish -> Reboot
  4. Update the firmware on the Pi to allow booting from USB:
    1. sudo apt-get update && sudo apt full-upgrade -y
    2. sudo rpi-update (only do this once on each Pi)
  5. Disable HDMI to save power: sudo sed -i -e '$i \/usr/bin/tvservice -o\n' /etc/rc.local
  6. Disable wifi and bluetooth:
    1. sudo bash -c 'echo -e "dtoverlay=pi3-disable-wifi" >> /boot/config.txt'
    2. sudo bash -c 'echo -e "dtoverlay=pi3-disable-bt" >> /boot/config.txt'
    3. sudo reboot
  7. Add your public key (while disconnected from the pi, with cat ~/.ssh/id_rsa.pub | ssh pi@ 'mkdir -p ~/.ssh && cat >> ~/.ssh/authorized_keys')
  8. Make sure the SSD is plugged into one of the blue USB 3 ports.
  9. SSH into the Pi again and Disable password authentication:
    1. sudo sed -i '/^#*PubkeyAuthentication /c PubkeyAuthentication yes' /etc/ssh/sshd_config
    2. sudo sed -i '/^#*ChallengeResponseAuthentication /c ChallengeResponseAuthentication no' /etc/ssh/sshd_config
    3. sudo sed -i '/^#*PasswordAuthentication /c PasswordAuthentication no' /etc/ssh/sshd_config
    4. sudo sed -i '/^#*UsePAM /c UsePAM no' /etc/ssh/sshd_config
  10. Configure the Pi to prioritize booting from the SSD:
    1. sudo raspi-config
    2. 6 Advanced Options -> A6 Boot Order -> B2 USB Boot -> Finish -> Reboot
    3. If you see an "No EEPROM bin file found" error, you may need to run sudo -E rpi-eeprom-config --edit and add [all] BOOT_ORDER=0xf14.
  11. Repeat the steps above (without sudo rpi-update) with the new OS on the SSD. SSH'ing into the new OS on the SSD may require clearing out the line with the corresponding IP in your ~/.ssh/known_hosts file with ssh-keygen -R .

Hardware Setup

  1. Remove the hard drive bay dividers and front panel extension cable from the inside of the chassis.

    remove chassis dividers

  2. Install the Raspberry Pi's into their cases.

    install raspberry pi into geekworm case

  3. Install the M.2 drives into their enclosures.

  4. Insert a SD card into each of the Pi's.

  5. Follow the Software Setup guide if you haven't already.

  6. Add mounting tape to the bottom of each of the SSD enclosures and attach them to the top of the Raspberry Pi's.

    add mounting tape to ssd

  7. Add mounting tape to the bottom of the raspberry pi cases. Don't remove the bottom cover of the mounting tape adhesive yet.

    add mounting tape to raspberry pi

  8. Remove the rubber feet from the bottom of the networking switch and replace with 4x small squares of mounting tape. Don't remove the bottom cover of the mounting tape adhesive yet.

  9. Add labels with numbers to the tops of the cases. These numbers will correspond to the hostnames of the Pi's in the software setup.

    raspberry pi numbering

  10. Use wire cutters to remove the metal adjacent to the ethernet port and mount the port side of the ethernet extension to the back of the chassis with washers and the included bolts.

    installing ethernet port 1

    installing ethernet port 2

  11. Cut a section of the plastic sheet that came with the chassis (for under the motherboard) to fit under the power supply breakout board.

  12. Drill holes in the chassis, insert nylon standoffs, and add the plastic sheet.

    installing atx breakout board 1

    installing atx breakout board 2

    installing atx breakout board 3

    installing atx breakout board 4

    installing atx breakout board 5

    installing atx breakout board 6

  13. Cut 5x 6" lengths of red standed wire, strip the both ends, and install one end of each wire into the "+" slots of the USB terminal blocks and the other side of each wire into the 5V terminals of the ATX power supply breakout board. Make sure the 20 pin power supply has a corresponding wire, some wires will be missing and may not actually work on the power breakout board.

    cutting wire for atx breakout board

    add usb connectors to atx breakout board

  14. Cut and strip 5x 6" lengths of green standed wires then install one end of the each wire into the "-" slots of the USB terminal blocks and the other side of each wire into the COM terminals on the ATX power supply breakout board. Again, ensure the wire exists on the 20 pin cable before using the terminal block.

  15. Mount the ATX power supply breakout board to the chassis and secure with nylon nuts. Insert the 20 pin ATX power supply connector into the ATX power supply breakout board.

    installing atx breakout board 7

  16. Remove the covers from the mounting tape adhesive on the bottom of the Pi cases and switch, then position them in the chassis. You will probably want to try to match the layout from the finished project above, but this may change depending on how many Raspberry Pi's you have.

  17. Attach ethernet cables from each of the Raspberry Pi's to the networking switch.

  18. Cut the 12V barrel connector along with 12" of wire off of the power adapter for the network switch. Attach the cable with the solid white line markings into a 12V terminal on the ATX breakout board and attach the other wire to a COM terminal on the breakout board. You may want to confirm this is the correct "+" wire for your switch with an ohm meter and the diagram near the power connector the back of the switch.

    network switch positive negative

  19. Cut a section of the plastic sheet that came with the chassis (for under the motherboard) to fit under the 8 channel relay board.

    cut piece of plastic to fit under relay

  20. Drill holes in the chassis, install nylon standoffs, and add the section of plastic sheet.

    installing relay 1

  21. Wire 4 of the 5 5V USB terminal "+" wires from the ATX breakout board to NC terminals on the 8 channel relay, and wire the other side of the relay to the "+" on the USB terminal block for 4 of the 5 Pi's. More relay setup instructions

  22. Mount the 8 channel relay to the chassis with the nylon standoffs and secure with nylon nuts.

    installing relay 2

  23. Cut a section of the plastic sheet that came with the chassis (for under the motherboard) to fit under the 1 channel relay board.

  24. Drill holes in the chassis and install nylon standoffs for the 1 channel relay.

    installing 1 ch relay part 1

    installing 1 ch relay part 2

  25. Wire DC+ on the relay to a 3.3V GPIO pin from a Pi that is powered by the 8 channel relay. DC- will need to be wired to a ground GPIO pin and IN will need to be wired to GPIO pin 18. Finally, wire the 5V power from the ATX breakout board to NC, and wire COM to the "+" on the terminal block for the Pi isn't powered by the 8 channel relay.

    installing 1 ch relay part 3

  26. Mount the 1 channel relay to the chassis with the nylon standoffs and secure with nylon nuts.

    installing 1 ch relay part 4

  27. Move the jumper on the 1 channel relay from H to L.

  28. Plug one of ATX SATA power connectors into the fan controller and connect the blower fan from the chassis into the fan controller.

  29. Drill a hole in the front of the case for the power switch and install the power switch.

    power switch installed

  30. Add a 290 ohm resistor inline with a 6" length of wire with a female header on one side, add heatshrink, then strip the side opposite of the female header and install the wire into a 3.3V terminal on the ATX power supply breakout board.

    add resistor to front panel wire 1

    add resistor to front panel wire 2

    wire front panel LED to the atx breakout board

  31. Add the stripped side of another wire of the same length with a female header on one side to a COM terminal on the power supply breakout board, then put the female headers onto the pins of one of the LEDs on the front panel.

    wire front panel LED to the atx breakout board

  32. Apply electrical tape over the unused header pins and terminal blocks to prevent accidental electrical shorts.

  33. Connect the Pi's USB C ports to the USB terminal adapters.

  34. Plug in the power and flip the power switch to "on".

Network Setup

  1. Get the static IPs, subnet, and gateway from the colocation provider.
  2. Edit /etc/dhcpcd.conf on each of the Pis and add the networking info from the colocation provider, for example:
    interface eth0
    static ip_address=192.168.1.191/24
    static routers=192.168.1.1
    static domain_name_servers=8.8.8.8 8.8.4.4
    
  3. sudo reboot

Remote Power Management Software

Only do this on the power management Paspberry Pi connected to the relay:

  1. curl -o relay_control.py https://raw.githubusercontent.com/pawl/raspberry-pi-1u-server/main/relay_control.py
  2. Test the script: python relay_control.py

You should see the light on the SSD flash off and on for the Pi whose relay's GPIO pin you entered.

Measuring Amperage

  1. Plug the server into the Kill-A-Watt.
  2. Press the button on the Kill-A-Watt for "amps".
  3. sudo apt-get install stress
  4. while true; do vcgencmd measure_clock arm; vcgencmd measure_temp; sleep 10; done& stress -c 4 -t 900s
  5. Restart the server by unplugging and plugging back in. Watch the amperage on start-up.

Single Points Of Failure

  • Switch
  • Relay
  • Power Supply
  • Electrical Short (from loose terminal or pinched wire?)
  • The Management Pi Dies (and can't powercycle most of the other Pi's)

How Many More Pi's Will Fit?

At least 7. (including 1 Pi Zero and a Pi 3b)

7 raspberry pis in 1u server

Cloud Comparisons

This is a tough comparison to make because the Pi CPU cores are only 1.5GHz per core.

AWS

  • T2.micro - $9.50/month for 1GB Ram & 1 CPU @ 2.5 GHz * 20 = $190/month
  • T2.medium - $38.00/month for 4GB Ram & 2 CPU @ 2.5 GHz * 10 = $380/month

The T2 instances have a limited number of CPU credits, which means they can't run at 100% all the time like the Pi can.

Digital Ocean

$20/month for 4GB Ram & 2 vCPUs @ 2.5 GHz * 10 = $200/month

Physical Server Comparisons

Dell R620

  • Form Factor: 1U
  • Power Consumption: 250W (not peak?) @ 120V = 2.08333A
  • Cost: $585
  • Specs:
    • 2x E5-2630 V2 2.6Ghz = 12 cores
    • 64GB RAM
    • 4x 900GB SAS

Dell R710

  • Form Factor: 2U
  • Power Consumption: 160W (not at peak?) @ 120V = 1.33333A
  • Cost: $688
  • Specs:
    • 2x E5649 2.53GHz = 12 cores
    • 64GB RAM
    • 16TB 4x 4TB

HoneyComb LX2

  • Form Factor: 1U
  • Power Consumption: 40W
  • Cost: $750 + ($100 chassis, $250 RAM, $250 Hard Drives) = $1350
  • Specs:
    • 16 2.2 GHz cores
    • 64GB RAM
    • 16TB 4x 4TB

2x M1 Mac Minis

  • Note: This will require running MacOS until full linux support.
  • Form Factor: 1U
  • Power Consumption: 80W (peak)
  • Cost: ($700 * 2) + $100 chassis = $1500
  • Specs:
    • 16 3.2 GHz cores (insanely fast compared to Pis)
    • 16GB RAM
    • 512GB SSD Storage

Ideas For V2

  • Add fuses and spade connectors inline with the devices to reduce the severity of an electical short.

Other Colocation Options

Other Chassis Options

Other Single Board Computer Options

Other Case Options

  • No case, drill holes for stand-offs, and mount to the chassis.
    • More work, but would probably work fine and small heatsinks would be cheap.
  • Argon ONE M.2 Case for Raspberry Pi 4
    • Includes an M.2 storage adapter.

Other Storage Options

Note: I tried using 2.5" SSDs with inateck enclosures and there wasn't enough room.

Other Power Options

Other Power Switch Options

Similar Projects

Owner
Paul Brown
Paul Brown
Count the number of people around you πŸ‘¨β€πŸ‘¨β€πŸ‘¦ by monitoring wifi signals πŸ“‘ .

howmanypeoplearearound Count the number of people around you πŸ‘¨β€πŸ‘¨β€πŸ‘¦ by monitoring wifi signals πŸ“‘ . howmanypeoplearearound calculates the number of

Zack 6.7k Jan 07, 2023
Uses the Duke Energy Gateway to import near real time energy usage into Home Assistant

Duke Energy Gateway This is a custom integration for Home Assistant. It pulls near-real-time energy usage from Duke Energy via the Duke Energy Gateway

Michael Meli 28 Dec 23, 2022
Control DJI Tello with Raspberry Pi and PS4 Controller

Control-DJI-Tello-with-Raspberry-Pi-and-PS4-Controller Demo of this project see

MohammadReza Sharifi 24 Aug 11, 2022
Extremely simple PyBadge examples to demonstrate different aspects of CircuitPython using PyBadge hardware.

BeginnerPyBadge I purchased a PyBadge recently. I'm new to hardware. I was surprised how hard it was to find easy examples demonstrating how different

Rubini LaForest 2 Oct 21, 2021
Tool to create 3D printable terrain with integrated path/road part files (Single material 3d printer)

BACKGROUND This has been an ongoing project of mine for a few months now. I run trails a lot and original the goal was to create a function to combine

9 Apr 26, 2022
Get input from OLED Joystick, Runs command, Displays output on OLED Screen (Great for P4wnP1)

p4wnsolo-joyterm Gets text input from OLED Joystick Runs the command you typed Displays output on OLED Screen (Great for P4wnP1 - even better on Raspb

PawnSolo 7 Dec 19, 2022
Designed a system that can efficiently sort recyclables and transfer them to corresponding bins using Python, a Raspberry Pi, and Quanser Labs.

System for Sorting and Recycling Containers - Project 3 Table of contents Overview The challenge Screenshot My process Built with Code snippets What I

Mit Patel 2 Dec 02, 2022
Playing diabolo with two robot arms in ROS + Gazebo

Playing diabolo with robots This repository holds the ROS packages for playing diabolo with two UR5e robot arms on ROS Melodic (Ubuntu 18.04). Read ou

23 Dec 18, 2022
Monitor an EnvisaLink alarm module running Honeywell firmware, and set a Nest device to Home/Away depending on whether the alarm is Disarmed/Away.

Nestalarm Monitor an EnvisaLink alarm module running Honeywell firmware, and set a Nest device to Home/Away depending on whether the alarm is Disarmed

1 Dec 30, 2021
emhass: Energy Management for Home Assistant

emhass EMHASS: Energy Management for Home Assistant Context This module was conceived as an energy management optimization tool for residential electr

David 70 Dec 24, 2022
Designed and coded a password manager in Python with Arduino integration

Designed and coded a password manager in Python with Arduino integration. The Program uses a master user to login, and stores account data such as usernames and passwords to the master user. While lo

Noah Colbourne 1 Jan 16, 2022
Programmable Rainbow Redstone Computer

Programmable Rainbow Redstone Computer Table of contents What is it? Program flasher How to use it What is it? PRRC is Programmable Rainbow Redstone C

Fern H 2 Jun 07, 2022
The ABR Control library is a python package for the control and path planning of robotic arms in real or simulated environments.

The ABR Control library is a python package for the control and path planning of robotic arms in real or simulated environments. ABR Control provides API's for the Mujoco, CoppeliaSim (formerly known

Applied Brain Research 277 Jan 05, 2023
Make your MacOS keyboard brightness fade in and out

Make your MacOS keyboard brightness fade in and out. (It's working depends on the Kbrightness file, which only works for 2015 Macs, so this will only work on 2015 Macs.)

1 Dec 16, 2021
Self Driving Car Prototype

Package Delivery Rover πŸš€ This project is a prototype of Self Driving Car. It's based on embedded systems, to meet the current requirement of delivery

Abhishek Pawar 1 Oct 31, 2021
Raspberry Pi Pico support for VS Code

Pico-Go VS Code Extension Pico-Go provides code auto-completion and allows you to communicate with your Raspberry Pi Pico board using the built-in REP

Chris Wood 114 Dec 28, 2022
Trajectory optimization package for Mini-Pupper robot

Trajectory optimization package for Mini-Pupper robot Purpose of this repository is to provide low-torque and low-impact trajectory for Mini-Pupper qu

Sotaro Katayama 38 Aug 17, 2022
SPI driven CircuitPython driver for PCA9745B constant current LED driver.

Introduction THIS IS VERY MUCH ALPHA AND IN ACTIVE DEVELOPMENT. THINGS WILL BREAK! THIS MAY ALSO BREAK YOUR THINGS! SPI driven CircuitPython driver fo

Andrew Ferguson 1 Jan 14, 2022
Huawei Solar sensors for Home Assistant

Huawei Solar Sensors This integration splits out the various values that are fetched from your Huawei Solar inverter into separate HomeAssistant senso

Thijs Walcarius 151 Dec 31, 2022
Modi2-firmware-updater - MODI+ Firmware Updater With Python

MODI+ Firmware Updater μ‹€ν–‰ μ€€λΉ„ python3(파이썬3.9 ν˜Ήμ€ κ·Έ μ΄μƒμ˜ 버전)λ₯Ό 컴퓨터에 μ„€μΉ˜ python3 -m pip

LUXROBO 1 Feb 04, 2022