Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

Overview

No-Transaction Band Network:
A Neural Network Architecture for Efficient Deep Hedging

Open In Colab

Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

Hedging and pricing financial derivatives while taking into account transaction costs is a tough task. Since the hedging optimization is computationally expensive or even inaccessible, risk premiums of derivatives are often overpriced. This problem prevents the liquid offering of financial derivatives.

Our proposal, "No-Transaction Band Network", enables precise hedging with much fewer simulations. This improvement leads to the offering of cheaper risk premiums and thus liquidizes the derivative market. We believe that our proposal brings the data-driven derivative business via "Deep Hedging" much closer to practical applications.

Summary

  • Deep Hedging is a deep learning-based framework to hedge financial derivatives.
  • However, a hedging strategy is hard to train due to the action dependence, i.e., an appropriate hedging action at the next step depends on the current action.
  • We propose a "No-Transaction Band Network" to overcome this issue.
  • This network circumvents the action-dependence and facilitates quick and precise hedging.

Motivation and Result

Hedging financial derivatives (exotic options in particular) in the presence of transaction cost is a hard task.

In the absence of transaction cost, the perfect hedge is accessible based on the Black-Scholes model. The real market, in contrast, always involves transaction cost and thereby makes hedging optimization much more challenging. Since the analytic formulas (such as the Black-Scholes formula of European option) are no longer available in such a market, human traders may hedge and then price derivatives based on their experiences.

Deep Hedging is a ground-breaking framework to automate and optimize such operations. In this framework, a neural network is trained to hedge derivatives so that it minimizes a proper risk measure. However, training in deep hedging suffers difficulty of action dependence since an appropriate action at the next step depends on the current action.

So, we propose "No-Transaction Band Network" for efficient deep hedging. This architecture circumvents the complication to facilitate quick training and better hedging.

loss_lookback

The learning histories above demonstrate that the no-transaction band network can be trained much quicker than the ordinary feed-forward network (See our paper for details).

price_lookback

The figure above plots the derivative price (technically derivative price spreads, which are prices subtracted by that without transaction cost) as a function of the transaction cost. The no-transaction-band network attains cheaper prices than the ordinary network and an approximate analytic formula.

Proposed Architecture: No-Transaction Band Network

The following figures show the schematic diagrams of the neural network which was originally proposed in Deep Hedging (left) and the no-transaction band network (right).

nn

  • The original network:
    • The input of the neural network uses the current hedge ratio (δ_ti) as well as other information (I_ti).
    • Since the input includes the current action δ_ti, this network suffers the complication of action-dependence.
  • The no-transaction band network:
    • This architecture computes "no-transaction band" [b_l, b_u] by a neural network and then gets the next hedge ratio by clamping the current hedge ratio inside this band.
    • Since the input of the neural network does not use the current action, this architecture can circumvent the action-dependence and facilitate training.

Give it a Try!

Open In Colab

You can try out the efficacy of No-Transaction Band Network on a Jupyter Notebook: main.ipynb.

As you can see there, the no-transaction-band can be implemented by simply adding one special layer to an arbitrary neural network.

A comprehensive library for Deep Hedging, pfhedge, is available on PyPI.

References

  • Shota Imaki, Kentaro Imajo, Katsuya Ito, Kentaro Minami and Kei Nakagawa, "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging". arXiv:2103.01775 [q-fin.CP].
  • 今木翔太, 今城健太郎, 伊藤克哉, 南賢太郎, 中川慧, "効率的な Deep Hedging のためのニューラルネットワーク構造", 人工知能学 金融情報学研究会(SIG-FIN)第 26 回研究会.
  • Hans Bühler, Lukas Gonon, Josef Teichmann and Ben Wood, "Deep hedging". Quantitative Finance, 2019, 19, 1271–1291. arXiv:1609.05213 [q-fin.CP].
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021