Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Overview

Hello from magnus

Magnus provides four capabilities for data teams:

  • Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

  • Run log store: A place to store run logs for reporting or re-running older runs. Along with capturing the status of execution, the run logs also capture code identifiers (commits, docker image digests etc), data hashes and configuration settings for reproducibility and audit.

  • Data Catalogs: A way to pass data between nodes of the graph during execution and also serves the purpose of versioning the data used by a particular run.

  • Secrets: A framework to provide secrets/credentials at run time to the nodes of the graph.

Design decisions:

  • Easy to extend: All the four capabilities are just definitions and can be implemented in many flavors.

    • Compute execution plan: You can choose to run the DAG on your local computer, in containers of local computer or off load the work to cloud providers or translate the DAG to AWS step functions or Argo workflows.

    • Run log Store: The actual implementation of storing the run logs could be in-memory, file system, S3, database etc.

    • Data Catalogs: The data files generated as part of a run could be stored on file-systems, S3 or could be extended to fit your needs.

    • Secrets: The secrets needed for your code to work could be in dotenv, AWS or extended to fit your needs.

  • Pipeline as contract: Once a DAG is defined and proven to work in local or some environment, there is absolutely no code change needed to deploy it to other environments. This enables the data teams to prove the correctness of the dag in dev environments while infrastructure teams to find the suitable way to deploy it.

  • Reproducibility: Run log store and data catalogs hold the version, code commits, data files used for a run making it easy to re-run an older run or debug a failed run. Debug environment need not be the same as original environment.

  • Easy switch: Your infrastructure landscape changes over time. With magnus, you can switch infrastructure by just changing a config and not code.

Magnus does not aim to replace existing and well constructed orchestrators like AWS Step functions or argo but complements them in a unified, simple and intuitive way.

Documentation

More details about the project and how to use it available here.

Installation

pip

magnus is a python package and should be installed as any other.

pip install magnus

Example Run

To give you a flavour of how magnus works, lets create a simple pipeline.

Copy the contents of this yaml into getting-started.yaml.


!!! Note

The below execution would create a folder called 'data' in the current working directory. The command as given should work in linux/macOS but for windows, please change accordingly.


> data/data.txt # For Linux/macOS next: success catalog: put: - "*" success: type: success fail: type: fail">
dag:
  description: Getting started
  start_at: step parameters
  steps:
    step parameters:
      type: task
      command_type: python-lambda
      command: "lambda x: {'x': int(x) + 1}"
      next: step shell
    step shell:
      type: task
      command_type: shell
      command: mkdir data ; env >> data/data.txt # For Linux/macOS
      next: success
      catalog:
        put:
          - "*"
    success:
      type: success
    fail:
      type: fail

And let's run the pipeline using:

 magnus execute --file getting-started.yaml --x 3

You should see a list of warnings but your terminal output should look something similar to this:

", "code_identifier_message": " " } ], "attempts": [ { "attempt_number": 0, "start_time": "2022-01-18 11:46:08.530138", "end_time": "2022-01-18 11:46:08.530561", "duration": "0:00:00.000423", "status": "SUCCESS", "message": "" } ], "user_defined_metrics": {}, "branches": {}, "data_catalog": [] }, "step shell": { "name": "step shell", "internal_name": "step shell", "status": "SUCCESS", "step_type": "task", "message": "", "mock": false, "code_identities": [ { "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c", "code_identifier_type": "git", "code_identifier_dependable": false, "code_identifier_url": " ", "code_identifier_message": " " } ], "attempts": [ { "attempt_number": 0, "start_time": "2022-01-18 11:46:08.576522", "end_time": "2022-01-18 11:46:08.588158", "duration": "0:00:00.011636", "status": "SUCCESS", "message": "" } ], "user_defined_metrics": {}, "branches": {}, "data_catalog": [ { "name": "data.txt", "data_hash": "8f25ba24e56f182c5125b9ede73cab6c16bf193e3ad36b75ba5145ff1b5db583", "catalog_relative_path": "20220118114608/data.txt", "catalog_handler_location": ".catalog", "stage": "put" } ] }, "success": { "name": "success", "internal_name": "success", "status": "SUCCESS", "step_type": "success", "message": "", "mock": false, "code_identities": [ { "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c", "code_identifier_type": "git", "code_identifier_dependable": false, "code_identifier_url": " ", "code_identifier_message": " " } ], "attempts": [ { "attempt_number": 0, "start_time": "2022-01-18 11:46:08.639563", "end_time": "2022-01-18 11:46:08.639680", "duration": "0:00:00.000117", "status": "SUCCESS", "message": "" } ], "user_defined_metrics": {}, "branches": {}, "data_catalog": [] } }, "parameters": { "x": 4 }, "run_config": { "executor": { "type": "local", "config": {} }, "run_log_store": { "type": "buffered", "config": {} }, "catalog": { "type": "file-system", "config": {} }, "secrets": { "type": "do-nothing", "config": {} } } }">
{
    "run_id": "20220118114608",
    "dag_hash": "ce0676d63e99c34848484f2df1744bab8d45e33a",
    "use_cached": false,
    "tag": null,
    "original_run_id": "",
    "status": "SUCCESS",
    "steps": {
        "step parameters": {
            "name": "step parameters",
            "internal_name": "step parameters",
            "status": "SUCCESS",
            "step_type": "task",
            "message": "",
            "mock": false,
            "code_identities": [
                {
                    "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c",
                    "code_identifier_type": "git",
                    "code_identifier_dependable": false,
                    "code_identifier_url": "
        
         "
        ,
                    "code_identifier_message": "
        
         "
        
                }
            ],
            "attempts": [
                {
                    "attempt_number": 0,
                    "start_time": "2022-01-18 11:46:08.530138",
                    "end_time": "2022-01-18 11:46:08.530561",
                    "duration": "0:00:00.000423",
                    "status": "SUCCESS",
                    "message": ""
                }
            ],
            "user_defined_metrics": {},
            "branches": {},
            "data_catalog": []
        },
        "step shell": {
            "name": "step shell",
            "internal_name": "step shell",
            "status": "SUCCESS",
            "step_type": "task",
            "message": "",
            "mock": false,
            "code_identities": [
                {
                    "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c",
                    "code_identifier_type": "git",
                    "code_identifier_dependable": false,
                    "code_identifier_url": "
        
         "
        ,
                    "code_identifier_message": "
        
         "
        
                }
            ],
            "attempts": [
                {
                    "attempt_number": 0,
                    "start_time": "2022-01-18 11:46:08.576522",
                    "end_time": "2022-01-18 11:46:08.588158",
                    "duration": "0:00:00.011636",
                    "status": "SUCCESS",
                    "message": ""
                }
            ],
            "user_defined_metrics": {},
            "branches": {},
            "data_catalog": [
                {
                    "name": "data.txt",
                    "data_hash": "8f25ba24e56f182c5125b9ede73cab6c16bf193e3ad36b75ba5145ff1b5db583",
                    "catalog_relative_path": "20220118114608/data.txt",
                    "catalog_handler_location": ".catalog",
                    "stage": "put"
                }
            ]
        },
        "success": {
            "name": "success",
            "internal_name": "success",
            "status": "SUCCESS",
            "step_type": "success",
            "message": "",
            "mock": false,
            "code_identities": [
                {
                    "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c",
                    "code_identifier_type": "git",
                    "code_identifier_dependable": false,
                    "code_identifier_url": "
        
         "
        ,
                    "code_identifier_message": "
        
         "
        
                }
            ],
            "attempts": [
                {
                    "attempt_number": 0,
                    "start_time": "2022-01-18 11:46:08.639563",
                    "end_time": "2022-01-18 11:46:08.639680",
                    "duration": "0:00:00.000117",
                    "status": "SUCCESS",
                    "message": ""
                }
            ],
            "user_defined_metrics": {},
            "branches": {},
            "data_catalog": []
        }
    },
    "parameters": {
        "x": 4
    },
    "run_config": {
        "executor": {
            "type": "local",
            "config": {}
        },
        "run_log_store": {
            "type": "buffered",
            "config": {}
        },
        "catalog": {
            "type": "file-system",
            "config": {}
        },
        "secrets": {
            "type": "do-nothing",
            "config": {}
        }
    }
}

You should see that data folder being created with a file called data.txt in it. This is according to the command in step shell.

You should also see a folder .catalog being created with a single folder corresponding to the run_id of this run.

To understand more about the input and output, please head over to the documentation.

Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023