DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

Overview

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, Jiwen Lu,

This repository contains PyTorch implementation for DenseCLIP.

DenseCLIP is a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP. Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models. By further using the contextual information from the image to prompt the language model, we are able to facilitate our model to better exploit the pre-trained knowledge. Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones including both CLIP models and ImageNet pre-trained models.

intro

Our code is based on mmsegmentation and mmdetection and timm.

[Project Page] [arXiv]

Usage

Requirements

  • torch>=1.8.0
  • torchvision
  • timm
  • mmcv-full==1.3.17
  • mmseg==0.19.0
  • mmdet==2.17.0
  • fvcore

To use our code, please first install the mmcv-full and mmseg/mmdet following the official guidelines (mmseg, mmdet) and prepare the datasets accordingly.

Pre-trained CLIP Models

Download the pre-trained CLIP models (RN50.pt, RN101.pt, VIT-B-16.pt) and save them to the pretrained folder.

Segmentation

Model Zoo

We provide DenseCLIP models for Semantic FPN framework.

Model FLOPs (G) Params (M) mIoU(SS) mIoU(MS) config url
RN50-CLIP 248.8 31.0 36.9 43.5 config -
RN50-DenseCLIP 269.2 50.3 43.5 44.7 config Tsinghua Cloud
RN101-CLIP 326.6 50.0 42.7 44.3 config -
RN101-DenseCLIP 346.3 67.8 45.1 46.5 config Tsinghua Cloud
ViT-B-CLIP 1037.4 100.8 49.4 50.3 config -
ViT-B-DenseCLIP 1043.1 105.3 50.6 51.3 config Tsinghua Cloud

Training & Evaluation on ADE20K

To train the DenseCLIP model based on CLIP ResNet-50, run:

bash dist_train.sh configs/denseclip_fpn_res50_512x512_80k.py 8

To evaluate the performance with multi-scale testing, run:

bash dist_test.sh configs/denseclip_fpn_res50_512x512_80k.py /path/to/checkpoint 8 --eval mIoU --aug-test

To better measure the complexity of the models, we provide a tool based on fvcore to accurately compute the FLOPs of torch.einsum and other operations:

python get_flops.py /path/to/config --fvcore

You can also remove the --fvcore flag to obtain the FLOPs measured by mmcv for comparisons.

Detection

Model Zoo

We provide models for both RetinaNet and Mask-RCNN framework.

RetinaNet
Model FLOPs (G) Params (M) box AP config url
RN50-CLIP 265 38 36.9 config -
RN50-DenseCLIP 285 60 37.8 config Tsinghua Cloud
RN101-CLIP 341 57 40.5 config -
RN101-DenseCLIP 360 78 41.1 config Tsinghua Cloud
Mask R-CNN
Model FLOPs (G) Params (M) box AP mask AP config url
RN50-CLIP 301 44 39.3 36.8 config -
RN50-DenseCLIP 327 67 40.2 37.6 config Tsinghua Cloud
RN101-CLIP 377 63 42.2 38.9 config -
RN101-DenseCLIP 399 84 42.6 39.6 config Tsinghua Cloud

Training & Evaluation on COCO

To train our DenseCLIP-RN50 using RetinaNet framework, run

 bash dist_train.sh configs/retinanet_denseclip_r50_fpn_1x_coco.py 8

To evaluate the box AP of RN50-DenseCLIP (RetinaNet), run

bash dist_test.sh configs/retinanet_denseclip_r50_fpn_1x_coco.py /path/to/checkpoint 8 --eval bbox

To evaluate both the box AP and the mask AP of RN50-DenseCLIP (Mask-RCNN), run

bash dist_test.sh configs/mask_rcnn_denseclip_r50_fpn_1x_coco.py /path/to/checkpoint 8 --eval bbox segm

License

MIT License

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{rao2021denseclip,
  title={DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting},
  author={Rao, Yongming and Zhao, Wenliang and Chen, Guangyi and Tang, Yansong and Zhu, Zheng and Huang, Guan and Zhou, Jie and Lu, Jiwen},
  journal={arXiv preprint arXiv:2112.01518},
  year={2021}
}
Owner
Yongming Rao
Yongming Rao
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

joisino 20 Aug 21, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022