Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Overview

Trading Tesla with Machine Learning and Sentiment Analysis

An interactive program to train a Random Forest Classifier to predict Tesla daily prices using technical indicators and sentiment scores of Twitter posts, backtesting the trading strategy and producing performance metrics.

The project leverages techniques, paradigms and data structures such as:

  • Functional and Object-Oriented Programming
  • Machine Learning
  • Sentiment Analysis
  • Concurrency and Parallel Processing
  • Direct Acyclic Graph (D.A.G.)
  • Data Pipeline
  • Idempotence

Scope

The intention behind this project was to implement the end-to-end workflow of the backtesting of an Algorithmic Trading strategy in a program with a sleek interface, and with a level of automation such that the user is able to tailor the details of the strategy and the output of the program by entering a minimal amount of data, partly even in an interactive way. This should make the program reusable, meaning that it's easy to carry out the backtesting of the trading strategy on a different asset. Furthermore, the modularity of the software design should facilitate changes to adapt the program to different requirements (i.e. different data or ML models).

Strategy Backtesting Results

The Random Forest classifier model was trained and optimised with the scikit-learn GridSearchCV module. After computing the trading signals predictions and backtesting the strategy, the following performances were recorded:

Performance Indicators Summary
Return Buy and Hold (%) 273.94
Return Buy and Hold Ann. (%) 91.5
Return Trading Strategy (%) 1555.54
Return Trading Strategy Ann. (%) 298.53
Sharpe Ratio 0.85
Hit Ratio (%) 93.0
Average Trades Profit (%) 3.99
Average Trades Loss (%) -1.15
Max Drawdown (%) -7.69
Days Max Drawdown Recovery 2

drawdown

returns

Running the Program

This is straightforward. There are very few variables and methods to initialise and call in order to run the whole program.

Let me illustrate it in the steps below:

  1. Provide the variables in download_params, a dictionary containing all the strategy and data downloading details.

    download_params = {'ticker' : 'TSLA',
                       'since' : '2010-06-29', 
                       'until' : '2021-06-02',
                       'twitter_scrape_by_account' : {'elonmusk': {'search_keyword' : '',
                                                                   'by_hashtag' : False},
                                                      'tesla': {'search_keyword' : '',
                                                                'by_hashtag' : False},
                                                      'WSJ' : {'search_keyword' : 'Tesla',
                                                               'by_hashtag' : False},
                                                      'Reuters' : {'search_keyword' : 'Tesla',
                                                                   'by_hashtag' : False},
                                                      'business': {'search_keyword' : 'Tesla',
                                                                   'by_hashtag' : False},
                                                      'CNBC': {'search_keyword' : 'Tesla',
                                                               'by_hashtag' : False},
                                                      'FinancialTimes' : {'search_keyword' : 'Tesla',
                                                                          'by_hashtag' : True}},
                       'twitter_scrape_by_most_popular' : {'all_twitter_1': {'search_keyword' : 'Tesla',
                                                                           'max_tweets_per_day' : 30,
                                                                           'by_hashtag' : True}},
                       'language' : 'en'                                      
                       }
  2. Initialise an instance of the Pipeline class:

    TSLA_data_pipeline = Pipeline()
  3. Call the run method on the Pipeline instance:

    TSLA_pipeline_outputs = TSLA_data_pipeline.run()

    This will return a dictionary with the Pipeline functions outputs, which in this example has been assigned to TSLA_pipeline_outputs. It will also print messages about the status and operations of the data downloading and manipulation process.

  4. Retrieve the path to the aggregated data to feed into the Backtest_Strategy class:

    data = glob.glob('data/prices_TI_sentiment_scores/*')[0]
  5. Initialise an instance of the Backtest_Strategy class with the data variable assigned in the previous step.

    TSLA_backtest_strategy = Backtest_Strategy(data)
  6. Call the preprocess_data method on the Backtest_Strategy instance:

    TSLA_backtest_strategy.preprocess_data()

    This method will show a summary of the data preprocessing results such as missing values, infinite values and features statistics.

From this point the program becomes interactive, and the user is able to input data, save and delete files related to the training and testing of the Random Forest model, and proceed to display the strategy backtesting summary and graphs.

  1. Call the train_model method on the Backtest_Strategy instance:

    TSLA_backtest_strategy.train_model()

    Here you will be able to train the model with the scikit-learn GridSearchCV, creating your own parameters grid, save and delete files containing the parameters grid and the best set of parameters found.

  2. Call the test_model method on the Backtest_Strategy instance:

    TSLA_backtest_strategy.test_model()

    This method will allow you to test the model by selecting one of the model's best parameters files saved during the training process (or the "default_best_param.json" file created by default by the program, if no other file was saved by the user).

    Once the process is complete, it will display the testing summary metrics and graphs.

    If you are satisfied with the testing results, from here you can display the backtesting summary, which equates to call the next and last method below. In this case, the program will also save a csv file with the data to compute the strategy performance metrics.

  3. Call the strategy_performance method on the Backtest_Strategy instance:

    TSLA_backtest_strategy.strategy_performance()

    This is the method to display the backtesting summary shown above in this document. Assuming a testing session has been completed and there is a csv file for computing the performance metrics, the program will display the backtesting results straight away using the existing csv file, which in turn is overwritten every time a testing process is completed. Otherwise, it will prompt you to run a training/testing session first.

Tips

If the required data (historical prices and Twitter posts) have been already downloaded, the only long execution time you may encounter is during the model training: the larger the parameters grid search, the longer the time. I recommend that you start getting confident with the program by using the data already provided within the repo (backtesting on Tesla stock).

This is because any downloading of new data on a significantly large period of time such to be reliable for the model training will likely require many hours, essentially due to the Twitter scraping process.

That said, please be also aware that as soon as you change the variables in the download_params dictionary and run the Pipeline instance, all the existing data files will be overwritten. This is because the program recognise on its own the relevant data that need to be downloaded according to the parameters passed into download_params, and this is a deliberate choice behind the program design.

That's all! Clone the repository and play with it. Any feedback welcome.

Disclaimer

Please be aware that the content and results of this project do not represent financial advice. You should conduct your own research before trading or investing in the markets. Your capital is at risk.

References

Owner
Renato Votto
Renato Votto
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

42 Dec 23, 2022
vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022
SynapseML - an open source library to simplify the creation of scalable machine learning pipelines

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Daniel Formoso 5.7k Dec 30, 2022
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application

Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera

Intel Corporation 858 Dec 25, 2022
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
Management of exclusive GPU access for distributed machine learning workloads

TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting

Paweł Rościszewski 131 Dec 12, 2022
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale.

Model Search Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers sp

AriesTriputranto 1 Dec 13, 2021
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
Reproducibility and Replicability of Web Measurement Studies

Reproducibility and Replicability of Web Measurement Studies This repository holds additional material to the paper "Reproducibility and Replicability

6 Dec 31, 2022