SummVis is an interactive visualization tool for text summarization.

Overview

SummVis

SummVis is an interactive visualization tool for analyzing abstractive summarization model outputs and datasets.

Figure

Installation

IMPORTANT: Please use python>=3.8 since some dependencies require that for installation.

git clone https://github.com/robustness-gym/summvis.git
cd summvis
pip install -r requirements.txt
python -m spacy download en_core_web_sm

Quickstart

Follow the steps below to start using SummVis immediately.

1. Download and extract data

Download our pre-cached dataset that contains predictions for state-of-the-art models such as PEGASUS and BART on 1000 examples taken from the CNN / Daily Mail validation set.

mkdir data
mkdir preprocessing
curl https://storage.googleapis.com/sfr-summvis-data-research/cnn_dailymail_1000.validation.anonymized.zip --output preprocessing/cnn_dailymail_1000.validation.anonymized.zip
unzip preprocessing/cnn_dailymail_1000.validation.anonymized.zip -d preprocessing/

2. Deanonymize data

Next, we'll need to add the original examples from the CNN / Daily Mail dataset to deanonymize the data (this information is omitted for copyright reasons). The preprocessing.py script can be used for this with the --deanonymize flag.

Deanonymize 10 examples (try_it mode):

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/cnn_dailymail_1000.validation.anonymized \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--processed_dataset_path data/try:cnn_dailymail_1000.validation \
--try_it

This will take between 10 seconds and several minutes depending on whether you've previously loaded CNN/DailyMail from the Datasets library.

3. Run SummVis

Finally, we're ready to run the Streamlit app. Once the app loads, make sure it's pointing to the right File at the top of the interface.

streamlit run summvis.py

General instructions for running with pre-loaded datasets

1. Download one of the pre-loaded datasets:

CNN / Daily Mail (1000 examples from validation set): https://storage.googleapis.com/sfr-summvis-data-research/cnn_dailymail_1000.validation.anonymized.zip
CNN / Daily Mail (full validation set): https://storage.googleapis.com/sfr-summvis-data-research/cnn_dailymail.validation.anonymized.zip
XSum (1000 examples from validation set): https://storage.googleapis.com/sfr-summvis-data-research/xsum_1000.validation.anonymized.zip
XSum (full validation set): https://storage.googleapis.com/sfr-summvis-data-research/xsum.validation.anonymized.zip

We recommend that you choose the smallest dataset that fits your need in order to minimize download / preprocessing time.

Example: Download and unzip CNN / Daily Mail

mkdir data
mkdir preprocessing
curl https://storage.googleapis.com/sfr-summvis-data-research/cnn_dailymail_1000.validation.anonymized.zip --output preprocessing/cnn_dailymail_1000.validation.anonymized.zip
unzip preprocessing/cnn_dailymail_1000.validation.anonymized.zip -d preprocessing/

2. Deanonymize n examples:

Set the --n_samples argument and name the --processed_dataset_path output file accordingly.

Example: Deanonymize 100 examples from CNN / Daily Mail:

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/cnn_dailymail_1000.validation.anonymized \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--processed_dataset_path data/100:cnn_dailymail_1000.validation \
--n_samples 100

Example: Deanonymize all pre-loaded examples from CNN / Daily Mail (1000 examples dataset):

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/cnn_dailymail_1000.validation.anonymized \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--processed_dataset_path data/full:cnn_dailymail_1000.validation \
--n_samples 1000

Example: Deanonymize all pre-loaded examples from CNN / Daily Mail (full dataset):

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/cnn_dailymail.validation.anonymized \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--processed_dataset_path data/full:cnn_dailymail.validation

Example: Deanonymize all pre-loaded examples from XSum (1000 examples dataset):

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/xsum_1000.validation.anonymized \
--dataset xsum \
--split validation \
--processed_dataset_path data/full:xsum_1000.validation \
--n_samples 1000

3. Run SummVis

Once the app loads, make sure it's pointing to the right File at the top of the interface.

streamlit run summvis.py

Alternately, if you need to point SummVis to a folder where your data is stored.

streamlit run summvis.py -- --path your/path/to/data

Note that the additional -- is not a mistake, and is required to pass command-line arguments in streamlit.

Get your data into SummVis: end-to-end preprocessing

You can also perform preprocessing end-to-end to load any summarization dataset or model predictions into SummVis. Instructions for this are provided below.

Prior to running the following, an additional install step is required:

python -m spacy download en_core_web_lg

1. Standardize and save dataset to disk.

Loads in a dataset from HF, or any dataset that you have and stores it in a standardized format with columns for document and summary:reference.

Example: Save CNN / Daily Mail validation split to disk as a jsonl file.

python preprocessing.py \
--standardize \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--save_jsonl_path preprocessing/cnn_dailymail.validation.jsonl

Example: Load custom my_dataset.jsonl, standardize, and save.

python preprocessing.py \
--standardize \
--dataset_jsonl path/to/my_dataset.jsonl \
--doc_column name_of_document_column \
--reference_column name_of_reference_summary_column \
--save_jsonl_path preprocessing/my_dataset.jsonl

2. Add predictions to the saved dataset.

Takes a saved dataset that has already been standardized and adds predictions to it from prediction jsonl files. Cached predictions for several models available here: https://storage.googleapis.com/sfr-summvis-data-research/predictions.zip

You may also generate your own predictions using this this script.

Example: Add 6 prediction files for PEGASUS and BART to the dataset.

python preprocessing.py \
--join_predictions \
--dataset_jsonl preprocessing/cnn_dailymail.validation.jsonl \
--prediction_jsonls \
predictions/bart-cnndm.cnndm.validation.results.anonymized \
predictions/bart-xsum.cnndm.validation.results.anonymized \
predictions/pegasus-cnndm.cnndm.validation.results.anonymized \
predictions/pegasus-multinews.cnndm.validation.results.anonymized \
predictions/pegasus-newsroom.cnndm.validation.results.anonymized \
predictions/pegasus-xsum.cnndm.validation.results.anonymized \
--save_jsonl_path preprocessing/cnn_dailymail.validation.jsonl

3. Run the preprocessing workflow and save the dataset.

Takes a saved dataset that has been standardized, and predictions already added. Applies all the preprocessing steps to it (running spaCy, lexical and semantic aligners), and stores the processed dataset back to disk.

Example: Autorun with default settings on a few examples to try it.

python preprocessing.py \
--workflow \
--dataset_jsonl preprocessing/cnn_dailymail.validation.jsonl \
--processed_dataset_path data/cnn_dailymail.validation \
--try_it

Example: Autorun with default settings on all examples.

python preprocessing.py \
--workflow \
--dataset_jsonl preprocessing/cnn_dailymail.validation.jsonl \
--processed_dataset_path data/cnn_dailymail

Citation

When referencing this repository, please cite this paper:

@misc{vig2021summvis,
      title={SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization}, 
      author={Jesse Vig and Wojciech Kryscinski and Karan Goel and Nazneen Fatema Rajani},
      year={2021},
      eprint={2104.07605},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2104.07605}
}

Acknowledgements

We thank Michael Correll for his valuable feedback.

Owner
Robustness Gym
Building tools for evaluating and repairing ML models.
Robustness Gym
Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Tomás Capretto 93 Dec 28, 2022
A python script and steps to display locations of peers connected to qbittorrent

A python script (along with instructions) to display the locations of all the peers your qBittorrent client is connected to in a Grafana worldmap dash

62 Dec 07, 2022
A filler visualizer built using python

filler-visualizer 42 filler のログをビジュアライズしてスポーツさながら楽しむことができます! Usage (標準入力でvisualizer.pyに渡せばALL OK) 1. 既にあるログをビジュアライズする $ ./filler_vm -t 3 -p1 john_fill

Takumi Hara 1 Nov 04, 2021
HW 02 for CS40 - matplotlib practice

HW 02 for CS40 - matplotlib practice project instructions https://github.com/mikeizbicki/cmc-csci040/tree/2021fall/hw_02 Drake Lyric Analysis Bar Char

13 Oct 27, 2021
Plotting library for IPython/Jupyter notebooks

bqplot 2-D plotting library for Project Jupyter Introduction bqplot is a 2-D visualization system for Jupyter, based on the constructs of the Grammar

3.4k Dec 29, 2022
patchwork for matplotlib

patchworklib patchwork for matplotlib test code Preparation of example plots import seaborn as sns import numpy as np import pandas as pd #Bri

Mori Hideto 185 Jan 06, 2023
Small project to recursively calculate and plot each successive order of the Hilbert Curve

hilbert-curve Small project to recursively calculate and plot each successive order of the Hilbert Curve. After watching 3Blue1Brown's video on Hilber

Stefan Mejlgaard 2 Nov 15, 2021
Pglive - Pglive package adds support for thread-safe live plotting to pyqtgraph

Live pyqtgraph plot Pglive package adds support for thread-safe live plotting to

Martin Domaracký 15 Dec 10, 2022
Friday Night Funkin - converts a chart from 4/4 time to 6/8 time, or from regular to swing tempo.

Chart to swing converter As seen in https://twitter.com/i_winxd/status/1462220493558366214 A program written in python that converts a chart from 4/4

5 Dec 23, 2022
Calendar heatmaps from Pandas time series data

Note: See MarvinT/calmap for the maintained version of the project. That is also the version that gets published to PyPI and it has received several f

Martijn Vermaat 195 Dec 22, 2022
demir.ai Dataset Operations

demir.ai Dataset Operations With this application, you can have the empty values (nan/null) deleted or filled before giving your dataset to machine le

Ahmet Furkan DEMIR 8 Nov 01, 2022
Sky attention heatmap of submissions to astrometry.net

astroheat Installation Requires Python 3.6+, Tested with Python 3.9.5 Install library dependencies pip install -r requirements.txt The program require

4 Jun 20, 2022
Graphing communities on Twitch.tv in a visually intuitive way

VisualizingTwitchCommunities This project maps communities of streamers on Twitch.tv based on shared viewership. The data is collected from the Twitch

Kiran Gershenfeld 312 Jan 07, 2023
Visualizations for machine learning datasets

Introduction The facets project contains two visualizations for understanding and analyzing machine learning datasets: Facets Overview and Facets Dive

PAIR code 7.1k Jan 07, 2023
A high performance implementation of HDBSCAN clustering. http://hdbscan.readthedocs.io/en/latest/

HDBSCAN Now a part of scikit-learn-contrib HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over va

Leland McInnes 91 Dec 29, 2022
finds grocery stores and stuff next to route (gpx)

Route-Report Route report is a command-line utility that can be used to locate points-of-interest near your planned route (gpx). The results are based

Clemens Mosig 5 Oct 10, 2022
A blender import/export system for Defold

defold-blender-export A Blender export system for the Defold game engine. Setup Notes There are no exhaustive documents for this tool yet. Its just no

David Lannan 27 Dec 30, 2022
HiPlot makes understanding high dimensional data easy

HiPlot - High dimensional Interactive Plotting HiPlot is a lightweight interactive visualization tool to help AI researchers discover correlations and

Facebook Research 2.4k Jan 04, 2023
CONTRIBUTIONS ONLY: Voluptuous, despite the name, is a Python data validation library.

CONTRIBUTIONS ONLY What does this mean? I do not have time to fix issues myself. The only way fixes or new features will be added is by people submitt

Alec Thomas 1.8k Dec 31, 2022
3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)

PyVista Deployment Build Status Metrics Citation License Community 3D plotting and mesh analysis through a streamlined interface for the Visualization

PyVista 1.6k Jan 08, 2023