🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

Overview

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutting edge technologies, this repository provides an easy-to-use toolkit for running and fine-tuning the state-of-the-art dense retrievers, namely 🚀 RocketQA. This toolkit has the following advantages:

  • State-of-the-art: 🚀 RocketQA provides our well-trained models, which achieve SOTA performance on many dense retrieval datasets. And it will continue to update the latest models.
  • First-Chinese-model: 🚀 RocketQA provides the first open source Chinese dense retrieval model, which is trained on millions of manual annotation data from DuReader.
  • Easy-to-use: By integrating this toolkit with JINA, 🚀 RocketQA can help developers build an end-to-end retrieval system and question answering system with several lines of code.

News

  • April 29, 2022: Training function is added to RocketQA toolkit. And the baseline models of DuReaderretrieval (both cross encoder and dual encoder) are available in RocketQA models.
  • March 30, 2022: The baseline of DuReaderretrieval leaderboard was released. [code/model]
  • March 30, 2022: We released DuReaderretrieval, a large-scale Chinese benchmark for passage retrieval. The dataset contains over 90K questions and 8M passages from Baidu Search. [paper] [data]
  • December 3, 2021: The toolkit of dense retriever RocketQA was released, including the first chinese dense retrieval model trained on DuReader.
  • August 26, 2021: RocketQA v2 was accepted by EMNLP 2021. [code/model]
  • May 5, 2021: PAIR was accepted by ACL 2021. [code/model]
  • March 11, 2021: RocketQA v1 was accepted by NAACL 2021. [code/model]

Installation

We provide two installation methods: Python Installation Package and Docker Environment

Install with Python Package

First, install PaddlePaddle.

# GPU version:
$ pip install paddlepaddle-gpu

# CPU version:
$ pip install paddlepaddle

Second, install rocketqa package (latest version: 1.1.0):

$ pip install rocketqa

NOTE: this toolkit MUST be running on Python3.6+ with PaddlePaddle 2.0+.

Install with Docker

docker pull rocketqa/rocketqa

docker run -it docker.io/rocketqa/rocketqa bash

Getting Started

Refer to the examples below, you can build and run your own Search Engine with several lines of code. We also provide a Playground with JupyterNotebook. Try 🚀 RocketQA straight away in your browser!

Running with JINA

JINA is a cloud-native neural search framework to build SOTA and scalable deep learning search applications in minutes. Here is a simple example to build a Search Engine based on JINA and RocketQA.

cd examples/jina_example
pip3 install -r requirements.txt

# Generate vector representations and build a libray for your Documents
# JINA will automaticlly start a web service for you
python3 app.py index toy_data/test.tsv

# Try some questions related to the indexed Documents
python3 app.py query_cli

Please view JINA example to know more.

Running with FAISS

We also provide a simple example built on Faiss.

cd examples/faiss_example/
pip3 install -r requirements.txt

# Generate vector representations and build a libray for your Documents
python3 index.py zh ../data/dureader.para test_index

# Start a web service on http://localhost:8888/rocketqa
python3 rocketqa_service.py zh ../data/dureader.para test_index

# Try some questions related to the indexed Documents
python3 query.py

API

You can also easily integrate 🚀 RocketQA into your own task. We provide two types of models, ERNIE-based dual encoder for answer retrieval and ERNIE-based cross encoder for answer re-ranking. For running our models, you can use the following functions.

Load model

rocketqa.available_models()

Returns the names of the available RocketQA models. To know more about the available models, please see the code comment.

rocketqa.load_model(model, use_cuda=False, device_id=0, batch_size=1)

Returns the model specified by the input parameter. It can initialize both dual encoder and cross encoder. By setting input parameter, you can load either RocketQA models returned by "available_models()" or your own checkpoints.

Dual encoder

Dual-encoder returned by "load_model()" supports the following functions:

model.encode_query(query: List[str])

Given a list of queries, returns their representation vectors encoded by model.

model.encode_para(para: List[str], title: List[str])

Given a list of paragraphs and their corresponding titles (optional), returns their representations vectors encoded by model.

model.matching(query: List[str], para: List[str], title: List[str])

Given a list of queries and paragraphs (and titles), returns their matching scores (dot product between two representation vectors).

model.train(train_set: str, epoch: int, save_model_path: str, args)

Given the hyperparameters train_set, epoch and save_model_path, you can train your own dual encoder model or finetune our models. Other settings like save_steps and learning_rate can also be set in args. Please refer to examples/example.py for detail.

Cross encoder

Cross-encoder returned by "load_model()" supports the following function:

model.matching(query: List[str], para: List[str], title: List[str])

Given a list of queries and paragraphs (and titles), returns their matching scores (probability that the paragraph is the query's right answer).

model.train(train_set: str, epoch: int, save_model_path: str, args)

Given the hyperparameters train_set, epoch and save_model_path, you can train your own cross encoder model or finetune our models. Other settings like save_steps and learning_rate can also be set in args. Please refer to examples/example.py for detail.

Examples

Following the examples below, you can retrieve the vector representations of your documents and connect 🚀 RocketQA to your own tasks.

Run RocketQA Model

To run RocketQA models, you should set the parameter model in 'load_model()' with RocketQA model name returned by 'available_models()'.

import rocketqa

query_list = ["trigeminal definition"]
para_list = [
    "Definition of TRIGEMINAL. : of or relating to the trigeminal nerve.ADVERTISEMENT. of or relating to the trigeminal nerve. ADVERTISEMENT."]

# init dual encoder
dual_encoder = rocketqa.load_model(model="v1_marco_de", use_cuda=True, device_id=0, batch_size=16)

# encode query & para
q_embs = dual_encoder.encode_query(query=query_list)
p_embs = dual_encoder.encode_para(para=para_list)
# compute dot product of query representation and para representation
dot_products = dual_encoder.matching(query=query_list, para=para_list)

Train Your Own Model

To train your own models, you can use train() function with your dataset and parameters. Training data contains 4 columns: query, title, para, label (0 or 1), separated by "\t". For detail about parameters and dataset, please refer to './examples/example.py'

import rocketqa

# init cross encoder, and set device and batch_size
cross_encoder = rocketqa.load_model(model="zh_dureader_ce", use_cuda=True, device_id=0, batch_size=32)

# finetune cross encoder based on "zh_dureader_ce_v2"
cross_encoder.train('./examples/data/cross.train.tsv', 2, 'ce_models', save_steps=1000, learning_rate=1e-5, log_folder='log_ce')

Run Your Own Model

To run your own models, you should set parameter model in 'load_model()' with a JSON config file.

import rocketqa

# init cross encoder
cross_encoder = rocketqa.load_model(model="./examples/ce_models/config.json", use_cuda=True, device_id=0, batch_size=16)

# compute relevance of query and para
relevance = cross_encoder.matching(query=query_list, para=para_list)

config is a JSON file like this

{
    "model_type": "cross_encoder",
    "max_seq_len": 384,
    "model_conf_path": "zh_config.json",
    "model_vocab_path": "zh_vocab.txt",
    "model_checkpoint_path": ${YOUR_MODEL},
    "for_cn": true,
    "share_parameter": 0
}

Folder examples provides more details.

Citations

If you find RocketQA v1 models helpful, feel free to cite our publication RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering

@inproceedings{rocketqa_v1,
    title="RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering",
    author="Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu and Haifeng Wang",
    year="2021",
    booktitle = "In Proceedings of NAACL"
}

If you find PAIR models helpful, feel free to cite our publication PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval

@inproceedings{rocketqa_pair,
    title="PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval",
    author="Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang and Ji-Rong Wen",
    year="2021",
    booktitle = "In Proceedings of ACL Findings"
}

If you find RocketQA v2 models helpful, feel free to cite our publication RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking

@inproceedings{rocketqa_v2,
    title="RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking",
    author="Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang and Ji-Rong Wen",
    year="2021",
    booktitle = "In Proceedings of EMNLP"
}

If you find DuReaderretrieval dataset helpful, feel free to cite our publication DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine

@inproceedings{DuReader_retrieval,
    title="DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine",
    author="Yifu Qiu, Hongyu Li, Yingqi Qu, Ying Chen, Qiaoqiao She, Jing Liu, Hua Wu and Haifeng Wang",
    year="2022"
}

License

This repository is provided under the Apache-2.0 license.

Contact Information

For help or issues using RocketQA, please submit a Github issue.

For other communication or cooperation, please contact Jing Liu ([email protected]) or scan the following QR Code.

Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한ęĩ­ė–´) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Multiple implementations for abstractive text summurization , using google colab

Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i

463 Dec 26, 2022
Model for recasing and repunctuating ASR transcripts

Recasing and punctuation model based on Bert Benoit Favre 2021 This system converts a sequence of lowercase tokens without punctuation to a sequence o

Benoit Favre 88 Dec 29, 2022
Exploring dimension-reduced embeddings

sleepwalk Exploring dimension-reduced embeddings This is the code repository. See here for the Sleepwalk web page. License and disclaimer This program

S. Anders's research group at ZMBH 91 Nov 29, 2022
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
Python api wrapper for JellyFish Lights

Python api wrapper for JellyFish Lights The hope is to make this a pip installable package Current capabalilities: Connects to a local JellyFish Light

10 Dec 18, 2022
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
This is a NLP based project to extract effective date of the contract from their text files.

Date-Extraction-from-Contracts This is a NLP based project to extract effective date of the contract from their text files. Problem statement This is

Sambhav Garg 1 Jan 26, 2022
An extensive UI tool built using new data scraped from BBC News

BBC-News-Analyzer An extensive UI tool built using new data scraped from BBC New

Antoreep Jana 1 Dec 31, 2021
Constituency Tree Labeling Tool

Constituency Tree Labeling Tool The purpose of this package is to solve the constituency tree labeling problem. Look from the dataset labeled by NLTK,

åŧ åŽ‡ 6 Dec 20, 2022
Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement

MTFAA-Net Unofficial PyTorch implementation of Baidu's MTFAA-Net: "Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speec

Shimin Zhang 87 Dec 19, 2022
vits chinese, tts chinese, tts mandarin

vits chinese, tts chinese, tts mandarin å˛ä¸ŠčŽ­įģƒæœ€įŽ€å•īŧŒéŸŗč´¨æœ€åĨŊįš„č¯­éŸŗ合成įŗģįģŸ

AmorTX 12 Dec 14, 2022
Codes for coreference-aware machine reading comprehension

Data and code for the paper "Tracing Origins: Coreference-aware Machine Reading Comprehension" at ACL2022. Dataset There are three folders for our thr

11 Sep 29, 2022
Mednlp - Medical natural language parsing and utility library

Medical natural language parsing and utility library A natural language medical

Paul Landes 3 Aug 24, 2022
A method to generate speech across multiple speakers

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Facebook Archive 873 Dec 15, 2022