Self-supervised learning optimally robust representations for domain generalization.

Overview

OptDom: Learning Optimal Representations for Domain Generalization

This repository contains the official implementation for Optimal Representations for Covariate Shift️. Our paper theoretically characterizes the minimal sufficient representations for optimal domain generalization (DG) under covariate shift and derives practical self-supervised learning (SSL) objectives for learning such representations.

We provide code for reproducing our main results with contribution highlights:

  • Finetuning pretrained SSL models (CLIP) to be superior robust DG models ️[minimal example]
  • A novel contrastive adversarial domain bottleneck for learning domain-invariant representations ️[implementation]

Setup

  1. Install PyTorch 1.7.1 and CLIP following the instructions.
  2. Install other packages: pip install -r requirements.txt.

Finetune & Evaluate CLIP on DomainBed

Our paper derives SSL objectives for learning optimally robust representations and gives insights into the superior robustness of CLIP (Sec 4). Here we include the code for finetuning CLIP with our proposed objectives and evaluating on the DomainBed benchmark, which reproduces our experiments in Sec 6.2.

The implementation is included in DomainBed directory which is highly based on the DomainBed repo. The CLIP based models are implemented in domainbed/clip_algorithms.py, and the domain bottlenecks are in domainbed/bottlenecks.py. The training script for finetuning CLIP with bottlenecks is domainbed/scripts/train_clip.py.

Preparation

Move to the DomainBed directory and download the datasets:

python -m domainbed.scripts.download --data_dir ./datasets/

By default, we download the datasets: PACS, VLCS, OfficeHome, TerraIncognita, DomainNet.

Launch a single run

If you want to launch a single run for debugging, run with command:

bash run_debug.sh

The key arguments include:

  • --dataset: dataset for finetuning and evaluation.
  • --algorithm: algorithms implemented with CLIP, see domainbed/clip_algorithms.py.
  • --test_envs: list of left-out environments for testing, others used for training/finetuning.
  • --hparams: JSON-serialized hyperprameter dict, see domainbed/hparams_registry.py for list of all hyperprameters.

Note that the result of a single run could be very sensitive to hyperparameters and random seed, we recommend to launch a sweep over hyperparameters and random seeds as in DomainBed.

Launch a sweep with tuning

To launch a sweep, run with command:

bash run_sweep_clip.sh

A sweep over 10 hyperparameters and 5 random seeds is launched for each dataset and algorithm. By default, the CLIP-RN50 model is used, and you can also run with other models by changing the clip_model argument, e.g., ViT-B/32 for CLIP-ViT-B/32. Also to launch a sweep, you need to select or implement a command launcher in domainbed/command_launchers.py by setting the launcher argument. If you are using slurm, we already implement a slurm launcher that you can adapt from.

After the sweep is finished, you can collect result with the notebook collect_clip_results.ipynb. Note that the results may be slightly different from the paper due to code cleaning.

(Optional) Run CAD in DomainBed setup

You can also evaluate our proposed (conditional) CAD bottleneck in the DomainBed setup where a ResNet-50 is end-to-end trained on source domains and evaluated on a left-out target domain. We include the implementation in domainbed/algorithms.py, which you can run with command:

bash run_sweep_e2e_dombed.sh

Also you can collect result with the notebook collect_e2e_results.ipynb. Note that as the claim of our paper, the algorithms in this setup lack access to the information of the target domain, so we don't expect our bottlenecks and other algorithms to necessarily outperform ERM. However, our CAD bottleneck does lead to consistent improvement surprisingly.

Finetune CLIP on LAION-400M

Coming soon!

Minimal Code for Custom Finetuning

If you want to finetune CLIP on your dataset with our bottlenecks, we provide the minimal code example:

import torch
from torch.utils.data import DataLoader, TensorDataset
import clip
from tqdm import tqdm

from domainbed import hparams_registry
from domainbed import algorithms


# 1. Determine whether you do supervised or contrastive finetuning:
#       - True: use a cross-entropy loss with a supervised dataset
#       - False: use a contrastive loss with a text-image-pair dataset
supervised_funetuning = True

if supervised_funetuning:
    loss_name = "Sup"
    dataset_name = "my suervised dataset"
else:
    loss_name = "Contrast"
    dataset_name = "my text-image pair dataset"


# 2. Determine the bottleneck you want to use with different properties
bottleneck_name = "CondCAD"  # Ent, CAD, CondCAD
algorithm_name = loss_name + "CLIPBottleneck" + bottleneck_name


# 3. Set hyperparameters, you can also change the hyperparameter dict and default values
hparams = hparams_registry.default_hparams(algorithm_name, dataset_name)


# 4. Load pretrained CLIP models
if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

pretrained, preprocess = clip.load(hparams['clip_model'], device, jit=False)


# 5. Load your dataset, you  dataset should have the form:
#       - (image, label) for supervised finetuning
#       - (image, text) for contrastive finetuning
#    Remember to use the CLIP preprocessing function for image transformation,
#       and your dataset should be a list of sub-datasets from different domains (singleton for a single domain)
dataset = load_your_dataset(dataset_name, preprocess)
num_envs = len(dataset)
num_classes = dataset.num_classes  # dummy for text-image-pair dataset


# 6. Featurize your dataset with CLIP models

def get_clip_feature(clip_model, x, y):
    """Compute CLIP features"""
    with torch.no_grad():
        z = clip_model.encode_image(x).float()
        if not supervised_funetuning:  # `y` is a batch of texts that should be tokenized
            y = clip_model.encode_text(clip.tokenize(y)).float()
    return z, y

def clip_featurize_data(clip_model, dataset, device):
    """Featurize a dataset"""
    Z, Y = [], []
    for x, y in tqdm(DataLoader(dataset, batch_size=512, num_workers=4)):
        z, y = get_clip_feature(clip_model, x.to(device), y.to(device))
        Z += [z.cpu()]
        Y += [y.cpu()]
    return TensorDataset(torch.cat(Z), torch.cat(Y))

def clip_precompute_splits(clip_model, splits, device):
    _splits = []
    for ds in splits:
        _splits.append(clip_featurize_data(clip_model, ds, device))
    return _splits


dataset = clip_precompute_splits(pretrained, dataset, device)
train_loaders = [DataLoader(
    dataset=env,
    batch_size=hparams['batch_size'],
    num_workers=4)
    for i, env in enumerate(dataset)]
train_minibatches_iterator = zip(*train_loaders)
steps_per_epoch = int(min([len(env) / hparams['batch_size'] for env in dataset]))
n_steps = hparams['max_step']


# 7. Initialize the model:
algorithm_class = algorithms.get_algorithm_class(algorithm_name)
algorithm = algorithm_class(pretrained.visual.output_dim, num_classes, num_envs, hparams, pretrained, None)
algorithm.to(device)
algorithm.train()


# 8. Finetune the model:
for step in range(n_steps):
    minibatches_device = [(x.to(device), y.to(device)) for x, y in next(train_minibatches_iterator)]
    algorithm.adjust_lr(step, n_steps, steps_per_epoch)
    step_vals = algorithm.update(minibatches_device, None)

Cite

If you find this work relevant to your work, please cite our paper:

@article{ruan2021optdom,
  title={Optimal Representations for Covariate Shift},
  author={Ruan, Yangjun and  Dubois, Yann and Maddison, Chris J},
  journal={arXiv preprint arXiv:2201.00057},
  year={2022},
}

Acknowledgement

Our code is based on:

Owner
Yangjun Ruan
Ph.D. student @ UofT & Vector Previously undergrad @ ZJU
Yangjun Ruan
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

CAiRE 42 Nov 10, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022