TensorFlow for Raspberry Pi

Overview

TensorFlow on Raspberry Pi

It's officially supported!

As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this repository is no longer recommended for your TensorFlow on RPi needs; use the official sources!

Pip installation

You can install the official wheel with the following commands, assuming you are using Raspbian 9:

sudo apt install libatlas-base-dev
pip3 install tensorflow

Check out the official TensorFlow website for more information.


It was a fun ride! With Raspberry Pi support now official, I will no longer be looking to update this repository. I'm sorry that I wasn't able to continue maintaining the repo as much as I wanted, but it was amazing watching the community continue to thrive.

-Sam

Comments
  • Warning during building from source

    Warning during building from source

    I tried to build from source by following the tutorial. When I do bazel build, it shows me a warning:

    WARNING: Sandboxed execution is not supported on your system and thus hermeticity of actions cannot be guaranteed. See http://bazel.io/docs/bazel-user-manual.html#sandboxing for more information. You can turn off this warning via --ignore_unsupported_sandboxing.

    I don't know whether this is going to be a problem.

    opened by zxzhijia 21
  • Building Bazel on NOOBS 1.9.0

    Building Bazel on NOOBS 1.9.0

    I follow your step to install tensorflow on raspberry pi 2 - newest Raspbian I have a trouble when building Bazel ./compile.sh It shows that error

    = new Signal("INT"); ^ src/main/java/com/google/devtools/build/lib/server/signal/InterruptSignalHandler.java:32: warning: Signal is internal proprietary API and may be removed in a future release private static final Signal SIGINT = new Signal("INT"); ^ src/main/java/com/google/devtools/build/lib/server/signal/InterruptSignalHandler.java:34: warning: SignalHandler is internal proprietary API and may be removed in a future release private SignalHandler oldHandler; ^ src/main/java/com/google/devtools/build/lib/server/signal/InterruptSignalHandler.java:42: warning: SignalHandler is internal proprietary API and may be removed in a future release this.oldHandler = Signal.handle(SIGINT, new SignalHandler() { ^ src/main/java/com/google/devtools/build/lib/server/signal/InterruptSignalHandler.java:44: warning: Signal is internal proprietary API and may be removed in a future release public void handle(Signal signal) { ^ src/main/java/com/google/devtools/build/lib/server/signal/InterruptSignalHandler.java:42: warning: Signal is internal proprietary API and may be removed in a future release this.oldHandler = Signal.handle(SIGINT, new SignalHandler() { ^ src/main/java/com/google/devtools/build/lib/server/signal/InterruptSignalHandler.java:55: warning: Signal is internal proprietary API and may be removed in a future release Signal.handle(SIGINT, oldHandler); ^ Exception in thread "main" java.lang.OutOfMemoryError: Java heap space at java.util.jar.Manifest$FastInputStream.(Manifest.java:332) at java.util.jar.Manifest$FastInputStream.(Manifest.java:327) at java.util.jar.Manifest.read(Manifest.java:195) at java.util.jar.Manifest.(Manifest.java:69) at java.util.jar.JarFile.getManifestFromReference(JarFile.java:199) at java.util.jar.JarFile.getManifest(JarFile.java:180) at sun.misc.URLClassPath$JarLoader$2.getManifest(URLClassPath.java:944) at java.net.URLClassLoader.defineClass(URLClassLoader.java:450) at java.net.URLClassLoader.access$100(URLClassLoader.java:73) at java.net.URLClassLoader$1.run(URLClassLoader.java:368) at java.net.URLClassLoader$1.run(URLClassLoader.java:362) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:361) at java.lang.ClassLoader.loadClass(ClassLoader.java:424) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331) at java.lang.ClassLoader.loadClass(ClassLoader.java:357) at com.sun.tools.javac.main.Main.resourceMessage(Main.java:610) at com.sun.tools.javac.main.Main.compile(Main.java:543) at com.sun.tools.javac.main.Main.compile(Main.java:381) at com.sun.tools.javac.main.Main.compile(Main.java:370) at com.sun.tools.javac.main.Main.compile(Main.java:361) at com.sun.tools.javac.Main.compile(Main.java:56) at com.sun.tools.javac.Main.main(Main.java:42)

    Do u have any idea to solve this problems. I guess it maybe OutOfMemoryError. Should I do the swap memory first before compile Bazel.

    Thank you very much.

    build 
    opened by trungdn 17
  • pip install

    pip install

    Hi, I want to install tensorflow package on raspberry pi. I was able to go through the first step: download of the package. But when trying to pip install it, I get the following error lines:

    could not find any downloads that satisfy the requirements... cleaning up ... No distributions at all found for tensorflow-0.8.0rc0... I tried both install with pip and pip2 without success. Has anyone been facing that error, and was able to solve it? Thanks.

    JM

    installation 
    opened by jmlb 16
  • I can`t install tensorflow properly

    I can`t install tensorflow properly

    Describe the Issue

    [email protected]:~ $ sudo pip install tensorflow-0.11.0-cp27-none-linux_armv7l.whl Unpacking ./tensorflow-0.11.0-cp27-none-linux_armv7l.whl Cleaning up... Exception: Traceback (most recent call last): File "/usr/lib/python2.7/dist-packages/pip/basecommand.py", line 122, in main status = self.run(options, args) File "/usr/lib/python2.7/dist-packages/pip/commands/install.py", line 290, in run requirement_set.prepare_files(finder, force_root_egg_info=self.bundle, bundle=self.bundle) File "/usr/lib/python2.7/dist-packages/pip/req.py", line 1198, in prepare_files do_download, File "/usr/lib/python2.7/dist-packages/pip/req.py", line 1365, in unpack_url unpack_file_url(link, location, download_dir) File "/usr/lib/python2.7/dist-packages/pip/download.py", line 640, in unpack_file_url unpack_file(from_path, location, content_type, link) File "/usr/lib/python2.7/dist-packages/pip/util.py", line 640, in unpack_file unzip_file(filename, location, flatten=not filename.endswith(('.pybundle', '.whl'))) File "/usr/lib/python2.7/dist-packages/pip/util.py", line 510, in unzip_file zip = zipfile.ZipFile(zipfp) File "/usr/lib/python2.7/zipfile.py", line 770, in init self._RealGetContents() File "/usr/lib/python2.7/zipfile.py", line 811, in _RealGetContents raise BadZipfile, "File is not a zip file" BadZipfile: File is not a zip file

    Storing debug log for failure in /root/.pip/pip.log

    I dont know why it doesnt work.... plz help me

    Steps to Reproduce

    Hardware/Software Info

    Please provide the following information about your Raspberry Pi setup:

    • Raspberry Pi model: raspberry pi3 model b.
    • Operating System used: mac
    • Version of Python used: 2.7.9
    • SD card memory size: 32GB
    • Size of USB/other device used as swap (if building from source):
    • TensorFlow git commit hash (if building from source):

    Relevant Console Output/Logs

    opened by ulrichcha 14
  • Error in v0.9 using python3.x

    Error in v0.9 using python3.x

    When I use python3.4, I get the following error:

    import tensorflow as tf RuntimeError: module compiled against API version 0xa but this version of numpy is 0x9

    I don't get the error using python2.7

    opened by ghost 14
  • Can I install TensorFlow on the Pi zero

    Can I install TensorFlow on the Pi zero

    Hi, Can I install TensorFlow on the Pi zero.?

    I tried "sudo pip2 install tensorflow-0.9.0-cp27-none-linux_armv7l.whl" but it returned tensorflow-0.9.0-cp27-none-linux_armv7l.whl is not a supported wheel on this platform. Storing debug log for failure in /root/.pip/pip.log

    Is it possible for Install tensorflow with Docker or C++?

    thank you and regards, Khoa

    opened by Khoa-NT 13
  • Tensorflow bazel build error

    Tensorflow bazel build error

    Describe the Issue

    After bazel installation, I proceeded to configure Tensorflow and build. Error occurs when building Tensorflow. I am new to Raspberry Pi as I just bought it to do a project, any help would be greatly appreciated.

    Target //src:bazel up-to-date:
      bazel-bin/src/bazel
    INFO: Elapsed time: 19448.170s, Critical Path: 18836.57s
    WARNING: /tmp/bazel_7kFiSyEp/out/external/bazel_tools/WORKSPACE:1: Workspace name in /tmp/bazel_7kFiSyEp/out/external/bazel_tools/WORKSPACE (@io_bazel) does not match the name given in the repository's definition (@bazel_tools); this will cause a build error in future versions.
    
    Build successful! Binary is here: /home/pi/tf/bazel/output/bazel
    [email protected]:~/tf/bazel $ cd . .
    [email protected]:~/tf/bazel $ cd ..
    [email protected]:~/tf $ cd bazel
    [email protected]:~/tf/bazel $ sudo cp output/bazel /usr/local/bin/bazel
    [email protected]:~/tf/bazel $ bazel
    Extracting Bazel installation...
    ..............................................................................................................................................................................................................................................................
                                                   [bazel release 0.4.3- (@non-git)]
    Usage: bazel <command> <options> ...
    
    Available commands:
      analyze-profile     Analyzes build profile data.
      build               Builds the specified targets.
      canonicalize-flags  Canonicalizes a list of bazel options.
      clean               Removes output files and optionally stops the server.
      coverage            Generates code coverage report for specified test targets.
      dump                Dumps the internal state of the bazel server process.
      fetch               Fetches external repositories that are prerequisites to the targets.
      help                Prints help for commands, or the index.
      info                Displays runtime info about the bazel server.
      mobile-install      Installs targets to mobile devices.
      query               Executes a dependency graph query.
      run                 Runs the specified target.
      shutdown            Stops the bazel server.
      test                Builds and runs the specified test targets.
      version             Prints version information for bazel.
    
    Getting more help:
      bazel help <command>
                       Prints help and options for <command>.
      bazel help startup_options
                       Options for the JVM hosting bazel.
      bazel help target-syntax
                       Explains the syntax for specifying targets.
      bazel help info-keys
                       Displays a list of keys used by the info command.
    [email protected]:~/tf/bazel $ cd ..
    
    [email protected]:~/tf $ git clone --recurse-submodules https://github.com/tensorflow/tensorflow
    Cloning into 'tensorflow'...
    remote: Counting objects: 170252, done.
    remote: Total 170252 (delta 0), reused 0 (delta 0), pack-reused 170251
    Receiving objects: 100% (170252/170252), 91.34 MiB | 1.42 MiB/s, done.
    Resolving deltas: 100% (130884/130884), done.
    Checking connectivity... done.
    Checking out files: 100% (5894/5894), done.
    [email protected]:~/tf $ cd tensorflow
    [email protected]:~/tf/tensorflow $ grep -Rl 'lib64' | xargs sed -i 's/lib64/lib/g'
    [email protected]:~/tf/tensorflow $ sudo nano tensorflow/core/platform/platform.h
    [email protected]:~/tf/tensorflow $ sudo nano WORKSPACE
    
    [email protected]:~/tf/tensorflow $ ./configure
    Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3
    Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]:
    Do you wish to use jemalloc as the malloc implementation? [Y/n]
    jemalloc enabled
    Do you wish to build TensorFlow with Google Cloud Platform support? [y/N]
    No Google Cloud Platform support will be enabled for TensorFlow
    Do you wish to build TensorFlow with Hadoop File System support? [y/N]
    No Hadoop File System support will be enabled for TensorFlow
    Do you wish to build TensorFlow with the XLA just-in-time compiler (experimental)? [y/N]
    No XLA support will be enabled for TensorFlow
    Found possible Python library paths:
      /usr/lib/python3/dist-packages
      /usr/local/lib/python3.4/dist-packages
    Please input the desired Python library path to use.  Default is [/usr/lib/python3/dist-packages]
    /usr/local/lib/python3.4/dist-packages
    Do you wish to build TensorFlow with OpenCL support? [y/N]
    No OpenCL support will be enabled for TensorFlow
    Do you wish to build TensorFlow with CUDA support? [y/N]
    No CUDA support will be enabled for TensorFlow
    .............................................................................................................................................................................................................................................................
    INFO: Starting clean (this may take a while). Consider using --expunge_async if the clean takes more than several minutes.
    Configuration finished
    
    [email protected]:~/tf/tensorflow $ bazel build -c opt --copt="-mfpu=neon-vfpv4" --copt="-funsafe-math-optimizations" --copt="-ftree-vectorize" --copt="-fomit-frame-pointer" --local_resources 1024,1.0,1.0 --verbose_failures tensorflow/tools/pip_package:build_pip_package
    WARNING: Sandboxed execution is not supported on your system and thus hermeticity of actions cannot be guaranteed. See http://bazel.build/docs/bazel-user-manual.html#sandboxing for more information. You can turn off this warning via --ignore_unsupported_sandboxing.
    ERROR: /home/pi/tf/tensorflow/third_party/gpus/cuda_configure.bzl:883:18: unexpected keyword 'environ' in call to repository_rule(implementation: function, *, attrs: dict or NoneType = None, local: bool = False).
    ERROR: com.google.devtools.build.lib.packages.BuildFileContainsErrorsException: error loading package '': Extension file 'third_party/gpus/cuda_configure.bzl' has errors.
    INFO: Elapsed time: 42.211s
    [email protected]:~/tf/tensorflow $
    

    Steps to Reproduce

    Followed step by step installation by source

    Hardware/Software Info

    Please provide the following information about your Raspberry Pi setup:

    • Raspberry Pi model: Raspberry Pi 3 Model B
    • Operating System used: Raspian (jessie 8.0) - NOOBs installation
    • Version of Python used: 3.4
    • SD card memory size: 64gb
    • Size of USB/other device used as swap (if building from source): 8gb
    • TensorFlow git commit hash (if building from source):

    Relevant Console Output/Logs

    error tensorflow.txt

    opened by aaronseah 11
  • Error Downloading numeric.min.js During Bazel Build

    Error Downloading numeric.min.js During Bazel Build

    Getting a validation failure when attempting to build TensorFlow wheel from source using most recent from-sources guide.

    ERROR: /home/pi/tf/tensorflow/tensorflow/tensorboard/bower/BUILD:5:1: no such package '@numericjs_numeric_min_js//file': Error downloading [https://cdnjs.cloudflare.com/ajax/libs/numeric/1.2.6/numeric.min.js] to /home/pi/.cache/bazel/_bazel_pi/4770c5ca1786316d370c900c0b614a6d/external/numericjs_numeric_min_js/numeric.min.js: sun.security.validator.ValidatorException: PKIX path validation failed: java.security.cert.CertPathValidatorException: signature check failed and referenced by '//tensorflow/tensorboard/bower:bower'.
    ERROR: Analysis of target '//tensorflow/tools/pip_package:build_pip_package' failed; build aborted.
    

    An issue on the official TensorFlow repo experienced this problem due to Docker getting out of sync with the root machine, but this doesn't help much here.

    opened by samjabrahams 11
  • Running Tensorflow in a Docker container on RPI

    Running Tensorflow in a Docker container on RPI

    Wow terrific work, has anyone tried to get tensor flow running in a docker container on the RPI. It would give some nice isolation and in our work, we use docker on arm extensively. In addition, it makes cross compilation easy as you can today run arm containers on linux (by installing qemu-user-static) or Mac (with the new Docker for Mac) so you do not need to compile directly on the Pi. I can send you a link to a docker package and git repo that makes this a little easier, then people can do a docker pull and get tensor flow on their pi without a big compile

    I'm finding that your .whl has the following issues and here are the steps:

    1. Download Docker for the Mac (it's in private beta) or on your ubuntu/debian machine, run apt-get install docker qemu-user-static which will give you the ability to cross compile
    2. Now I'm working on a Dockerfile that can encapsulate your wheel file. The main issue is that the resin/rpi-raspbian is a minimal build so doesn't include things that you need. Specifically here is what I have found so far:
    • The toolchain is not all there, in looking at the http://www.scipy.org/scipylib/building/linux.html#installation-from-source instructions, looks like you just need to add to your readme the following prerequisites:
    apt-get install gcc fortran 
    

    At a minimum in the rpi-raspbian container. I'm not sure but it looks like you also need libatlas-base-dev as well, but I have not yet finished your .whl compilation. As a final note, instead of creating a swapfile on a device, you might want to use a file based swapfile, that makes things way easier, there is a package called dphys-swapfile, so then you can just mount your junk USB that you do not care about as a single file.

    opened by richtong 11
  • tensorflow-1.0.0-cp27-none-linux_armv7l.whl is not a supported wheel on this platform.

    tensorflow-1.0.0-cp27-none-linux_armv7l.whl is not a supported wheel on this platform.

    Describe the Issue

    When I try to install the Tensorflow through the python-wheel provided by you, I got a error message said: tensorflow-1.0.0-cp27-none-linux_armv7l.whl is not a supported wheel on this platform

    Steps to Reproduce

    apt-get update
    apt-get install python-pip python-dev
    wget https://github.com/samjabrahams/tensorflow-on-raspberry-pi/releases/download/v1.0.0/tensorflow-1.0.0-cp27-none-linux_armv7l.whl
    
    sudo pip install tensorflow-1.0.0-cp27-none-linux_armv7l.whl
    

    Hardware/Software Info

    Please provide the following information about your Raspberry Pi setup:

    • Raspberry Pi model: Raspberry Pi 3
    • Operating System used: Raspbian 8
    • Version of Python used: 2.7.9
    • SD card memory size: 16
    • Size of USB/other device used as swap (if building from source):
    • TensorFlow git commit hash (if building from source):

    Relevant Console Output/Logs

    sudo pip install tensorflow-1.0.0-cp27-none-linux_armv7l.whl
    tensorflow-1.0.0-cp27-none-linux_armv7l.whl is not a supported wheel on this platform.
    
    opened by exelban 10
  • Bazel not found

    Bazel not found

    Describe the Issue

    After installing by pip, bazel is not found when trying to run retrain.py Does bazel have to be installed in addition or is it a fault?

    Steps to Reproduce

    Install with pip and execute:

    bazel build third_party/tensorflow/examples/image_retraining:retrain && \ bazel-bin/third_party/tensorflow/examples/image_retraining/retrain \ --image_dir ~/imagedir

    Hardware/Software Info

    Please provide the following information about your Raspberry Pi setup:

    • Raspberry Pi model: 3
    • Operating System used: Jessie
    • Version of Python used: 2
    • SD card memory size: 16gb
    • Size of USB/other device used as swap (if building from source):
    • TensorFlow git commit hash (if building from source):

    Relevant Console Output/Logs

    -bash: bazel: command not found

    opened by AdamMiltonBarker 10
  • building bazel results in an error

    building bazel results in an error "cannot determine JDK version"

    Describe the Issue

    Followed all steps but ./compile.sh results in

    [email protected]:~/tf/bazel $ sudo ./compile.sh INFO: You can skip this first step by providing a path to the bazel binary as second argument: INFO: ./compile.sh compile /path/to/bazel 🍃 Building Bazel from scratch ERROR: Cannot determine JDK version, please set $JAVA_HOME.\n $JAVAC_VERSION is "javac 11.0.15"

    I tried setting it as follows [email protected]:~/tf/bazel $ JAVA_HOME="${JAVA_HOME:-$(readlink -f $(which javac) | sed 's_/bin/javac__')}" [email protected]:~/tf/bazel $ echo $JAVA_HOME /usr/lib/jvm/java-11-openjdk-armhf But the build still results in the exact same error. Any advice you can offer?

    This is by the way on Pi 3B+.

    Steps to Reproduce

    Hardware/Software Info

    Please provide the following information about your Raspberry Pi setup:

    • Raspberry Pi model:
    • Operating System used:
    • Version of Python used:
    • SD card memory size:
    • Size of USB/other device used as swap (if building from source):
    • TensorFlow git commit hash (if building from source):

    Relevant Console Output/Logs

    opened by wonderfuljames74 0
  • Is there something for raspberry pi 4B?

    Is there something for raspberry pi 4B?

    hey, thanks for you guys' donation.It's great. As raspberry pi 4B is already been come out. So I wonder if there is something for 4B. Thanks very much.BTW, I use the ubuntu server OS.

    opened by Jarvis-Cai 1
  • Memory Error trying to install TensorFlow on Raspberry PI WH

    Memory Error trying to install TensorFlow on Raspberry PI WH

    ###pip install tensorflow...

    It runs through the entire process and goes right up to almost 100% and then crashes with multiple red lines and the last line says "Memory Error" - tried different versions, reimaged SD card and same error message

    Raspberry PI WH - 8 GB SD Card/Python 3.5

    Please provide the following information about your Raspberry Pi setup:

    • Raspberry Pi model: WH
    • Operating System used: Linux
    • Version of Python used: 3.5
    • SD card memory size: 8 GB
    • Size of USB/other device used as swap (if building from source):
    • TensorFlow git commit hash (if building from source): just install so far pip install tensorflow

    ###Memory Error

    opened by jtquest 2
  • Failing to build tensorflow C++ API on raspberry pi model 3 b+

    Failing to build tensorflow C++ API on raspberry pi model 3 b+

    Describe the Issue

    I am following this guide (https://gist.github.com/EKami/9869ae6347f68c592c5b5cd181a3b205) to install tensorflow on a raspberry pi for c++. I attempt to build the tensorflow library with this command: bazel build -c opt --config=monolithic --local_resources 1024,1.0,1.0 --verbose_failures //tensorflow:libtensorflow_cc.so

    Steps to Reproduce

    Follow the guide above but skipping the portion where he says to replace: native.new_http_archive( name = "eigen_archive", urls = [ "http://mirror.bazel.build/bitbucket.org/eigen/eigen/get/f3a22f35b044.tar.gz", "https://bitbucket.org/eigen/eigen/get/f3a22f35b044.tar.gz", ], sha256 = "ca7beac153d4059c02c8fc59816c82d54ea47fe58365e8aded4082ded0b820c4", strip_prefix = "eigen-eigen-f3a22f35b044", build_file = str(Label("//third_party:eigen.BUILD")), ) as doing so caused me problems. I also used all of the newest versions of software the tutorial has you download

    Hardware/Software Info

    Please provide the following information about your Raspberry Pi setup:

    • Raspberry Pi model: 3 B+
    • Operating System used: Raspbian Stretch
    • Version of Python used: 3.5.3
    • SD card memory size: 32 GB
    • Size of USB/other device used as swap (if building from source): 16 GB
    • TensorFlow git commit hash (if building from source): I cloned the repository October 19 2018

    Relevant Con/home/pi/tf/tensorflow/tensorflow/BUILD:558:1: Linking of rule '//tensorflow:libtensorflow_cc.so' failed (Exit 1): gcc failed: error executing command

    (cd /home/pi/.cache/bazel/_bazel_pi/4770c5ca1786316d370c900c0b614a6d/execroot/org_tensorflow &&
    exec env -
    PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/games:/usr/games
    PWD=/proc/self/cwd
    PYTHON_BIN_PATH=/usr/bin/python
    PYTHON_LIB_PATH=/usr/local/lib/python2.7/dist-packages
    TF_DOWNLOAD_CLANG=0
    TF_NEED_CUDA=0
    TF_NEED_OPENCL_SYCL=0
    /usr/bin/gcc -shared -o bazel-out/arm-opt/bin/tensorflow/libtensorflow_cc.so -z defs -Wl,--version-script tensorflow/tf_version_script.lds '-Wl,-rpath,$ORIGIN/' -Wl,-soname,libtensorflow_cc.so -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread -pthread '-fuse-ld=gold' -Wl,-no-as-needed -Wl,-z,relro,-z,now -B/usr/bin -B/usr/bin -pass-exit-codes -Wl,--gc-sections -Wl,@bazel-out/arm-opt/bin/tensorflow/libtensorflow_cc.so-2.params) bazel-out/arm-opt/bin/tensorflow/core/kernels/_objs/list_kernels/list_kernels.pic.o:list_kernels.cc:function tensorflow::TensorListStack<Eigen::ThreadPoolDevice, tensorflow::bfloat16>::Compute(tensorflow::OpKernelContext*): error: undefined reference to 'void tensorflow::ConcatCPUtensorflow::bfloat16(tensorflow::DeviceBase*, std::vector<std::unique_ptr<tensorflow::TTypes<tensorflow::bfloat16, 2, int>::ConstMatrix, std::default_delete<tensorflow::TTypes<tensorflow::bfloat16, 2, int>::ConstMatrix> >, std::allocator<std::unique_ptr<tensorflow::TTypes<tensorflow::bfloat16, 2, int>::ConstMatrix, std::default_delete<tensorflow::TTypes<tensorflow::bfloat16, 2, int>::ConstMatrix> > > > const&, tensorflow::TTypes<tensorflow::bfloat16, 2, int>::Matrix*)' bazel-out/arm-opt/bin/tensorflow/core/kernels/_objs/list_kernels/list_kernels.pic.o:list_kernels.cc:function tensorflow::TensorListGather<Eigen::ThreadPoolDevice, tensorflow::bfloat16>::Compute(tensorflow::OpKernelContext*): error: undefined reference to 'void tensorflow::ConcatCPUtensorflow::bfloat16(tensorflow::DeviceBase*, std::vector<std::unique_ptr<tensorflow::TTypes<tensorflow::bfloat16, 2, int>::ConstMatrix, std::default_delete<tensorflow::TTypes<tensorflow::bfloat16, 2, int>::ConstMatrix> >, std::allocator<std::unique_ptr<tensorflow::TTypes<tensorflow::bfloat16, 2, int>::ConstMatrix, std::default_delete<tensorflow::TTypes<tensorflow::bfloat16, 2, int>::ConstMatrix> > > > const&, tensorflow::TTypes<tensorflow::bfloat16, 2, int>::Matrix*)' collect2: error: ld returned 1 exit status Target //tensorflow:libtensorflow_cc.so failed to build INFO: Elapsed time: 21254.436s, Critical Path: 1956.26s INFO: 2708 processes: 2708 local. FAILED: Build did NOT complete successfully sole Output/Logs

    opened by ahilleary 1
  • Bazel v0.13.0 failed in RPi3B+

    Bazel v0.13.0 failed in RPi3B+

    Describe the Issue

    build failed

    Steps to Reproduce

    download bazelv0.13.0 and edit files as in this git and perform bash ./compile.sh

    Hardware/Software Info

    RPi3B+, Raspbian OS

    ERROR: image

    opened by ghimiredhikura 0
Releases(v1.1.0)
Owner
Sam Abrahams
Machine Learning, TensorFlow
Sam Abrahams
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022