LIVECell - A large-scale dataset for label-free live cell segmentation

Related tags

Deep LearningLIVECell
Overview

LIVECell dataset

This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale dataset for label-free live cell segmentation" by Edlund et. al. 2021.

Background

Light microscopy is a cheap, accessible, non-invasive modality that when combined with well-established protocols of two-dimensional cell culture facilitates high-throughput quantitative imaging to study biological phenomena. Accurate segmentation of individual cells enables exploration of complex biological questions, but this requires sophisticated imaging processing pipelines due to the low contrast and high object density. Deep learning-based methods are considered state-of-the-art for most computer vision problems but require vast amounts of annotated data, for which there is no suitable resource available in the field of label-free cellular imaging. To address this gap we present LIVECell, a high-quality, manually annotated and expert-validated dataset that is the largest of its kind to date, consisting of over 1.6 million cells from a diverse set of cell morphologies and culture densities. To further demonstrate its utility, we provide convolutional neural network-based models trained and evaluated on LIVECell.

How to access LIVECell

All images in LIVECell are available following this link (requires 1.3 GB). Annotations for the different experiments are linked below. To see a more details regarding benchmarks and how to use our models, see this link.

LIVECell-wide train and evaluate

Annotation set URL
Training set link
Validation set link
Test set link

Single cell-type experiments

Cell Type Training set Validation set Test set
A172 link link link
BT474 link link link
BV-2 link link link
Huh7 link link link
MCF7 link link link
SH-SHY5Y link link link
SkBr3 link link link
SK-OV-3 link link link

Dataset size experiments

Split URL
2 % link
4 % link
5 % link
25 % link
50 % link

Comparison to fluorescence-based object counts

The images and corresponding json-file with object count per image is available together with the raw fluorescent images the counts is based on.

Cell Type Images Counts Fluorescent images
A549 link link link
A172 link link link

Download all of LIVECell

The LIVECell-dataset and trained models is stored in an Amazon Web Services (AWS) S3-bucket. It is easiest to download the dataset if you have an AWS IAM-user using the AWS-CLI in the folder you would like to download the dataset to by simply:

aws s3 sync s3://livecell-dataset .

If you do not have an AWS IAM-user, the procedure is a little bit more involved. We can use curl to make an HTTP-request to get the S3 XML-response and save to files.xml:

files.xml ">
curl -H "GET /?list-type=2 HTTP/1.1" \
     -H "Host: livecell-dataset.s3.eu-central-1.amazonaws.com" \
     -H "Date: 20161025T124500Z" \
     -H "Content-Type: text/plain" http://livecell-dataset.s3.eu-central-1.amazonaws.com/ > files.xml

We then get the urls from files using grep:

)[^<]+" files.xml | sed -e 's/^/http:\/\/livecell-dataset.s3.eu-central-1.amazonaws.com\//' > urls.txt ">
grep -oPm1 "(?<=
   
    )[^<]+" files.xml | sed -e 's/^/http:\/\/livecell-dataset.s3.eu-central-1.amazonaws.com\//' > urls.txt

   

Then download the files you like using wget.

File structure

The top-level structure of the files is arranged like:

/livecell-dataset/
    ├── LIVECell_dataset_2021  
    |       ├── annotations/
    |       ├── models/
    |       ├── nuclear_count_benchmark/	
    |       └── images.zip  
    ├── README.md  
    └── LICENSE

LIVECell_dataset_2021/images

The images of the LIVECell-dataset are stored in /livecell-dataset/LIVECell_dataset_2021/images.zip along with their annotations in /livecell-dataset/LIVECell_dataset_2021/annotations/.

Within images.zip are the training/validation-set and test-set images are completely separate to facilitate fair comparison between studies. The images require 1.3 GB disk space unzipped and are arranged like:

images/
    ├── livecell_test_images
    |       └── 
   
    
    |               └── 
    
     _Phase_
     
      _
      
       _
       
        _
        
         .tif └── livecell_train_val_images └── 
          
         
        
       
      
     
    
   

Where is each of the eight cell-types in LIVECell (A172, BT474, BV2, Huh7, MCF7, SHSY5Y, SkBr3, SKOV3). Wells are the location in the 96-well plate used to culture cells, indicates location in the well where the image was acquired, the time passed since the beginning of the experiment to image acquisition and index of the crop of the original larger image. An example image name is A172_Phase_C7_1_02d16h00m_2.tif, which is an image of A172-cells, grown in well C7 where the image is acquired in position 1 two days and 16 hours after experiment start (crop position 2).

LIVECell_dataset_2021/annotations/

The annotations of LIVECell are prepared for all tasks along with the training/validation/test splits used for all experiments in the paper. The annotations require 2.1 GB of disk space and are arranged like:

annotations/
    ├── LIVECell
    |       └── livecell_coco_
   
    .json
    ├── LIVECell_single_cells
    |       └── 
    
     
    |               └── 
     
      .json
    └── LIVECell_dataset_size_split
            └── 
      
       _train
       
        percent.json 
       
      
     
    
   
  • annotations/LIVECell contains the annotations used for the LIVECell-wide train and evaluate task.
  • annotations/LIVECell_single_cells contains the annotations used for Single cell type train and evaluate as well as the Single cell type transferability tasks.
  • annotations/LIVECell_dataset_size_split contains the annotations used to investigate the impact of training set scale.

All annotations are in Microsoft COCO Object Detection-format, and can for instance be parsed by the Python package pycocotools.

models/

ALL models trained and evaluated for tasks associated with LIVECell are made available for wider use. The models are trained using detectron2, Facebook's framework for object detection and instance segmentation. The models require 15 GB of disk space and are arranged like:

models/
   └── Anchor_
   
    
            ├── ALL/
            |    └──
    
     .pth
            └── 
     
      /
                 └──
      
       .pths
       

      
     
    
   

Where each .pth is a binary file containing the model weights.

configs/

The config files for each model can be found in the LIVECell github repo

LIVECell
    └── Anchor_
   
    
            ├── livecell_config.yaml
            ├── a172_config.yaml
            ├── bt474_config.yaml
            ├── bv2_config.yaml
            ├── huh7_config.yaml
            ├── mcf7_config.yaml
            ├── shsy5y_config.yaml
            ├── skbr3_config.yaml
            └── skov3_config.yaml

   

Where each config file can be used to reproduce the training done or in combination with our model weights for usage, for more info see the usage section.

nuclear_count_benchmark/

The images and fluorescence-based object counts are stored as the label-free images in a zip-archive and the corresponding counts in a json as below:

nuclear_count_benchmark/
    ├── A172.zip
    ├── A172_counts.json
    ├── A172_fluorescent_images.zip
    ├── A549.zip
    ├── A549_counts.json 
    └── A549_fluorescent_images.zip

The json files are on the following format:

": " " } ">
{
    "
     
      ": "
      
       "
}

      
     

Where points to one of the images in the zip-archive, and refers to the object count according fluorescent nuclear labels.

LICENSE

All images, annotations and models associated with LIVECell are published under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.

All software source code associated associated with LIVECell are published under the MIT License.

Owner
Sartorius Corporate Research
Sartorius Corporate Research
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021