The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

Overview

mlflow_hydra_optuna_the_easy_way

The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

Objective

TODO

Usage

1. build docker image to run training jobs

$ make build
docker build \
    -t mlflow_hydra_optuna:the_easy_way \
    -f Dockerfile \
    .
[+] Building 1.8s (10/10) FINISHED
 => [internal] load build definition from Dockerfile                                                                       0.0s
 => => transferring dockerfile: 37B                                                                                        0.0s
 => [internal] load .dockerignore                                                                                          0.0s
 => => transferring context: 2B                                                                                            0.0s
 => [internal] load metadata for docker.io/library/python:3.9.5-slim                                                       1.7s
 => [1/5] FROM docker.io/library/python:[email protected]:9828573e6a0b02b6d0ff0bae0716b027aa21cf8e59ac18a76724d216bab7ef0  0.0s
 => [internal] load build context                                                                                          0.0s
 => => transferring context: 17.23kB                                                                                       0.0s
 => CACHED [2/5] WORKDIR /opt                                                                                              0.0s
 => CACHED [3/5] COPY .//requirements.txt /opt/                                                                            0.0s
 => CACHED [4/5] RUN apt-get -y update &&     apt-get -y install     apt-utils     gcc &&     apt-get clean &&     rm -rf  0.0s
 => [5/5] COPY .//src/ /opt/src/                                                                                           0.0s
 => exporting to image                                                                                                     0.0s
 => => exporting layers                                                                                                    0.0s
 => => writing image sha256:256aa71f14b29d5e93f717724534abf0f173522a7f9260b5d0f2051c4607782e                               0.0s
 => => naming to docker.io/library/mlflow_hydra_optuna:the_easy_way                                                        0.0s

Use 'docker scan' to run Snyk tests against images to find vulnerabilities and learn how to fix them

2. run parameter search and training job

the parameters for optuna and hyper parameter search are in hydra/default.yaml

$ cat hydra/default.yaml
optuna:
  cv: 5
  n_trials: 20
  n_jobs: 1
random_forest_classifier:
  parameters:
    - name: criterion
      suggest_type: categorical
      value_range:
        - gini
        - entropy
    - name: max_depth
      suggest_type: int
      value_range:
        - 2
        - 100
    - name: max_leaf_nodes
      suggest_type: int
      value_range:
        - 2
        - 100
lightgbm_classifier:
  parameters:
    - name: num_leaves
      suggest_type: int
      value_range:
        - 2
        - 100
    - name: max_depth
      suggest_type: int
      value_range:
        - 2
        - 100
    - name: learning_rage
      suggest_type: uniform
      value_range:
        - 0.0001
        - 0.01
    - name: feature_fraction
      suggest_type: uniform
      value_range:
        - 0.001
        - 0.9


$ make run
docker run \
	-it \
	--name the_easy_way \
	-v ~/mlflow_hydra_optuna_the_easy_way/hydra:/opt/hydra \
	-v ~/mlflow_hydra_optuna_the_easy_way/outputs:/opt/outputs \
	mlflow_hydra_optuna:the_easy_way \
	python -m src.main
[2021-10-14 00:41:29,804][__main__][INFO] - config: {'optuna': {'cv': 5, 'n_trials': 20, 'n_jobs': 1}, 'random_forest_classifier': {'parameters': [{'name': 'criterion', 'suggest_type': 'categorical', 'value_range': ['gini', 'entropy']}, {'name': 'max_depth', 'suggest_type': 'int', 'value_range': [2, 100]}, {'name': 'max_leaf_nodes', 'suggest_type': 'int', 'value_range': [2, 100]}]}, 'lightgbm_classifier': {'parameters': [{'name': 'num_leaves', 'suggest_type': 'int', 'value_range': [2, 100]}, {'name': 'max_depth', 'suggest_type': 'int', 'value_range': [2, 100]}, {'name': 'learning_rage', 'suggest_type': 'uniform', 'value_range': [0.0001, 0.01]}, {'name': 'feature_fraction', 'suggest_type': 'uniform', 'value_range': [0.001, 0.9]}]}}
[2021-10-14 00:41:29,805][__main__][INFO] - os cwd: /opt/outputs/2021-10-14/00-41-29
[2021-10-14 00:41:29,807][src.model.model][INFO] - initialize preprocess pipeline: Pipeline(steps=[('standard_scaler', StandardScaler())])
[2021-10-14 00:41:29,810][src.model.model][INFO] - initialize random forest classifier pipeline: Pipeline(steps=[('standard_scaler', StandardScaler()),
                ('model', RandomForestClassifier())])
[2021-10-14 00:41:29,812][__main__][INFO] - params: [SearchParams(name='criterion', suggest_type=<SUGGEST_TYPE.CATEGORICAL: 'categorical'>, value_range=['gini', 'entropy']), SearchParams(name='max_depth', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='max_leaf_nodes', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100))]
[2021-10-14 00:41:29,813][src.model.model][INFO] - new search param: [SearchParams(name='criterion', suggest_type=<SUGGEST_TYPE.CATEGORICAL: 'categorical'>, value_range=['gini', 'entropy']), SearchParams(name='max_depth', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='max_leaf_nodes', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100))]
[2021-10-14 00:41:29,817][src.model.model][INFO] - initialize lightgbm classifier pipeline: Pipeline(steps=[('standard_scaler', StandardScaler()),
                ('model', LGBMClassifier())])
[2021-10-14 00:41:29,819][__main__][INFO] - params: [SearchParams(name='num_leaves', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='max_depth', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='learning_rage', suggest_type=<SUGGEST_TYPE.UNIFORM: 'uniform'>, value_range=(0.0001, 0.01)), SearchParams(name='feature_fraction', suggest_type=<SUGGEST_TYPE.UNIFORM: 'uniform'>, value_range=(0.001, 0.9))]
[2021-10-14 00:41:29,820][src.model.model][INFO] - new search param: [SearchParams(name='num_leaves', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='max_depth', suggest_type=<SUGGEST_TYPE.INT: 'int'>, value_range=(2, 100)), SearchParams(name='learning_rage', suggest_type=<SUGGEST_TYPE.UNIFORM: 'uniform'>, value_range=(0.0001, 0.01)), SearchParams(name='feature_fraction', suggest_type=<SUGGEST_TYPE.UNIFORM: 'uniform'>, value_range=(0.001, 0.9))]
[2021-10-14 00:41:29,821][src.dataset.load_dataset][INFO] - load iris dataset
[2021-10-14 00:41:29,824][src.search.search][INFO] - estimator: <src.model.model.RandomForestClassifierPipeline object at 0x7f5776aa5f10>
[I 2021-10-14 00:41:29,825] A new study created in memory with name: random_forest_classifier
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
[I 2021-10-14 00:41:30,519] Trial 0 finished with value: 0.96 and parameters: {'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 62}. Best is trial 0 with value: 0.96.
2021/10/14 00:41:30 WARNING mlflow.tracking.context.git_context: Failed to import Git (the Git executable is probably not on your PATH), so Git SHA is not available. Error: Failed to initialize: Bad git executable.
The git executable must be specified in one of the following ways:
    - be included in your $PATH
    - be set via $GIT_PYTHON_GIT_EXECUTABLE
    - explicitly set via git.refresh()

All git commands will error until this is rectified.

This initial warning can be silenced or aggravated in the future by setting the
$GIT_PYTHON_REFRESH environment variable. Use one of the following values:
    - quiet|q|silence|s|none|n|0: for no warning or exception
    - warn|w|warning|1: for a printed warning
    - error|e|raise|r|2: for a raised exception

Example:
    export GIT_PYTHON_REFRESH=quiet

/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)


<... long training ...>


[I 2021-10-14 00:41:56,870] Trial 19 finished with value: 0.9466666666666667 and parameters: {'num_leaves': 64, 'max_depth': 17, 'learning_rage': 0.0070407009344824675, 'feature_fraction': 0.4416643843187271}. Best is trial 0 with value: 0.9466666666666667.
[2021-10-14 00:41:57,031][src.search.search][INFO] - result for light_gbm_classifier: {'estimator': 'light_gbm_classifier', 'best_score': 0.9466666666666667, 'best_params': {'num_leaves': 17, 'max_depth': 20, 'learning_rage': 0.006952391958964706, 'feature_fraction': 0.8414032025653786}}
[2021-10-14 00:41:57,032][__main__][INFO] - parameter search results: [{'estimator': 'random_forest_classifier', 'best_score': 0.9666666666666668, 'best_params': {'criterion': 'entropy', 'max_depth': 14, 'max_leaf_nodes': 65}}, {'estimator': 'light_gbm_classifier', 'best_score': 0.9466666666666667, 'best_params': {'num_leaves': 17, 'max_depth': 20, 'learning_rage': 0.006952391958964706, 'feature_fraction': 0.8414032025653786}}]
/usr/local/lib/python3.9/site-packages/sklearn/pipeline.py:394: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
  self._final_estimator.fit(Xt, y, **fit_params_last_step)
[2021-10-14 00:41:57,518][__main__][INFO] - random forest evaluation result: accuracy=0.9777777777777777 precision=0.9777777777777777 recall=0.9777777777777777
/usr/local/lib/python3.9/site-packages/sklearn/preprocessing/_label.py:98: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
/usr/local/lib/python3.9/site-packages/sklearn/preprocessing/_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
[LightGBM] [Warning] Unknown parameter: learning_rage
[LightGBM] [Warning] feature_fraction is set=0.8414032025653786, colsample_bytree=1.0 will be ignored. Current value: feature_fraction=0.8414032025653786
[2021-10-14 00:41:57,818][__main__][INFO] - lightgbm evaluation result: accuracy=0.9555555555555556 precision=0.9555555555555556 recall=0.9555555555555556

3. training history and artifacts

training history and artifacts are recorded under outputs

$ tree -a outputs
outputs
├── .gitignore
├── .gitkeep
└── 2021-10-14
    └── 00-41-29
        ├── .hydra
        │   ├── config.yaml
        │   ├── hydra.yaml
        │   ├── light_gbm_classifier.yaml
        │   ├── overrides.yaml
        │   └── random_forest_classifier.yaml
        ├── light_gbm_classifier.pickle
        ├── main.log
        ├── mlruns
        │   ├── .trash
        │   └── 0
        │       ├── 001f4913ee2c464e9095894c280a827f
        │       │   ├── artifacts
        │       │   ├── meta.yaml
        │       │   ├── metrics
        │       │   │   └── accuracy
        │       │   ├── params
        │       │   │   ├── feature_fraction
        │       │   │   ├── learning_rage
        │       │   │   ├── max_depth
        │       │   │   ├── model
        │       │   │   └── num_leaves
        │       │   └── tags
        │       │       ├── mlflow.runName
        │       │       ├── mlflow.source.name
        │       │       ├── mlflow.source.type
        │       │       └── mlflow.user

<... many files ...>

        │       └── meta.yaml
        └── random_forest_classifier.pickle

you can also open mlflow ui

$ cd outputs/2021-10-13/13-27-41
$ mlflow ui
[2021-10-13 22:34:51 +0900] [48165] [INFO] Starting gunicorn 20.1.0
[2021-10-13 22:34:51 +0900] [48165] [INFO] Listening at: http://127.0.0.1:5000 (48165)
[2021-10-13 22:34:51 +0900] [48165] [INFO] Using worker: sync
[2021-10-13 22:34:51 +0900] [48166] [INFO] Booting worker with pid: 48166

open localhost:5000 in your web-browser

0

1

Owner
shibuiwilliam
Technical engineer for cloud computing, container, deep learning and AR. MENSA. Author of ml-system-design-pattern. https://www.amazon.co.jp/dp/B08YNMRH4J/
shibuiwilliam
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
Iterative stochastic gradient descent (SGD) linear regressor with regularization

SGD-Linear-Regressor Iterative stochastic gradient descent (SGD) linear regressor with regularization Dataset: Kaggle “Graduate Admission 2” https://w

Zechen Ma 1 Oct 29, 2021
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022