Python package for analyzing sensor-collected human motion data

Overview

Installation | Requirements | Usage | Contribution | Getting Help

Sensor Motion

PyPI - Python Version PyPI GitHub issues https://readthedocs.org/projects/sensormotion/badge/?version=latest https://badges.gitter.im/gitterHQ/gitter.png

Python package for analyzing sensor-collected human motion data (e.g. physical activity levels, gait dynamics).

Dedicated accelerometer devices, such as those made by Actigraph, usually bundle software for the analysis of the sensor data. In my work I often collect sensor data from smartphones and have not been able to find any comparable analysis software.

This Python package allows the user to extract human motion data, such as gait/walking dynamics, directly from accelerometer signals. Additionally, the package allows for the calculation of physical activity (PA) or moderate-to-vigorous physical activity (MVPA) counts, similar to activity count data offered by companies like Actigraph.

Installation

You can install this package using pip:

pip install sensormotion

Requirements

This package has the following dependencies, most of which are just Python packages:

  • Python 3.x
    • The easiest way to install Python is using the Anaconda distribution, as it also includes the other dependencies listed below
    • Python 2.x has not been tested, so backwards compatibility is not guaranteed
  • numpy
    • Included with Anaconda. Otherwise, install using pip (pip install numpy)
  • scipy
    • Included with Anaconda. Otherwise, install using pip (pip install scipy)
  • matplotlib
    • Included with Anaconda. Otherwise, install using pip (pip install matplotlib)

Usage

Here is brief example of extracting step-based metrics from raw vertical acceleration data:

Import the package:

import sensormotion as sm

If you have a vertical acceleration signal x, and its corresponding time signal t, we can begin by filtering the signal using a low-pass filter:

b, a = sm.signal.build_filter(frequency=10,
                              sample_rate=100,
                              filter_type='low',
                              filter_order=4)

x_filtered = sm.signal.filter_signal(b, a, signal=x)

images/filter.png

Next, we can detect the peaks (or valleys) in the filtered signal, which gives us the time and value of each detection. Optionally, we can include a plot of the signal and detected peaks/valleys:

peak_times, peak_values = sm.peak.find_peaks(time=t, signal=x_filtered,
                                             peak_type='valley',
                                             min_val=0.6, min_dist=30,
                                             plot=True)

images/peak_detection.png

From the detected peaks, we can then calculate step metrics like cadence and step time:

cadence = sm.gait.cadence(time=t, peak_times=peak_times, time_units='ms')
step_mean, step_sd, step_cov = sm.gait.step_time(peak_times=peak_times)

Physical activity counts and intensities can also be calculated from the acceleration data:

x_counts = sm.pa.convert_counts(x, time, integrate='simpson')
y_counts = sm.pa.convert_counts(y, time, integrate='simpson')
z_counts = sm.pa.convert_counts(z, time, integrate='simpson')
vm = sm.signal.vector_magnitude(x_counts, y_counts, z_counts)
categories, time_spent = sm.pa.cut_points(vm, set_name='butte_preschoolers', n_axis=3)

images/pa_counts.png

For a more in-depth tutorial, and more workflow examples, please take a look at the tutorial.

I would also recommend looking over the documentation to see other functionalities of the package.

Contribution

I work on this package in my spare time, on an "as needed" basis for my research projects. However, pull requests for bug fixes and new features are always welcome!

Please see the develop branch for the development version of the package, and check out the issues page for bug reports and feature requests.

Getting Help

You can find the full documentation for the package here

Python's built-in help function will show documentation for any module or function: help(sm.gait.step_time)

You're encouraged to post questions, bug reports, or feature requests as an issue

Alternatively, ask questions on Gitter

Comments
  • Question

    Question

    I am using sensormotion.py package for finding peaks for one of my applications. I want to know how normalized min_value (0-1) in peak.find_peaks is related to minimum detectable peak value.

    opened by vivekmahadev 2
  • I need help using this library!

    I need help using this library!

    Hi

    I'm very interested in using this library in my project. I have a test of 2min walking at 100Hz and I collect the data from accelerometer, gyro and magnetometer of an Iphone 6.

    I'm trying to use the library with my data but I could understand some things. For example this function sm.peak.find_peaks(ac_lags, ac, peak_type='peak', min_val= 0.6, min_dist=32, plot=True). What are the suitable values of min_val and min_dist parameters? Are they problem dependent? I have tried with many values and the step estimation is not correct.

    Please, could you help me?

    Best regards

    opened by ogreyesp 1
  • sm.gait.step_regularity IndexError

    sm.gait.step_regularity IndexError

    step_reg, stride_reg = sm.gait.step_regularity(ac_peak_values) File ".../python3.6/site-packages/sensormotion-1.1.0-py3.6.egg/sensormotion/gait.py", line 128, in step_regularity ac_d2 = peaks_half[2] # second dominant period i.e. a stride (left-left) sm.gait.step_regularity IndexError: index 2 is out of bounds for axis 0 with size 2

    opened by jiakang 1
  • Example: Importing from live cvs file?

    Example: Importing from live cvs file?

    opened by RandoSY 1
  • Question about step regularity

    Question about step regularity

    Hey, I'm using your package right now to generate features for a dataset. I have looked at the paper by Moe Nilssen et al. and tried to follow the steps for calculating step and stride regularity. However, I wonder why you still do the following calculation at the end:

    step_reg = ac_d1 / ac_lag0 stride_reg = ac_d2 / ac_lag0

    Can you help me with this?

    opened by vanessabin 1
Releases(1.1.4)
Owner
Simon Ho
Data Science | Machine Learning | Statistics | Gaming
Simon Ho
Data analysis and visualisation projects from a range of individual projects and applications

Python-Data-Analysis-and-Visualisation-Projects Data analysis and visualisation projects from a range of individual projects and applications. Python

Tom Ritman-Meer 1 Jan 25, 2022
This repository contains some analysis of possible nerdle answers

Nerdle Analysis https://nerdlegame.com/ This repository contains some analysis of possible nerdle answers. Here's a quick overview: nerdle.py contains

0 Dec 16, 2022
International Space Station data with Python research 🌎

International Space Station data with Python research 🌎 Plotting ISS trajectory, calculating the velocity over the earth and more. Plotting trajector

Facundo Pedaccio 41 Jun 16, 2022
cLoops2: full stack analysis tool for chromatin interactions

cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base

YaqiangCao 25 Dec 14, 2022
PyEmits, a python package for easy manipulation in time-series data.

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Thompson 5 Sep 23, 2022
A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

TennisBusinessIntelligenceProject - A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

carlo paladino 1 Jan 02, 2022
Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance companies

Insurance-Fraud-Claims Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance com

1 Jan 27, 2022
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
Meltano: ELT for the DataOps era. Meltano is open source, self-hosted, CLI-first, debuggable, and extensible.

Meltano is open source, self-hosted, CLI-first, debuggable, and extensible. Pipelines are code, ready to be version c

Meltano 625 Jan 02, 2023
Time ranges with python

timeranges Time ranges. Read the Docs Installation pip timeranges is available on pip: pip install timeranges GitHub You can also install the latest v

Micael Jarniac 2 Sep 01, 2022
A forecasting system dedicated to smart city data

smart-city-predictions System prognostyczny dedykowany dla danych inteligentnych miast Praca inżynierska realizowana przez Michała Stawikowskiego and

Kevin Lai 1 Nov 08, 2021
Leverage Twitter API v2 to analyze tweet metrics such as impressions and profile clicks over time.

Tweetmetric Tweetmetric allows you to track various metrics on your most recent tweets, such as impressions, retweets and clicks on your profile. The

Mathis HAMMEL 29 Oct 18, 2022
PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

1 Feb 07, 2022
Pip install minimal-pandas-api-for-polars

Minimal Pandas API for Polars Install From PyPI: pip install minimal-pandas-api-for-polars Example Usage (see tests/test_minimal_pandas_api_for_polars

Austin Ray 6 Oct 16, 2022
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
Modular analysis tools for neurophysiology data

Neuroanalysis Modular and interactive tools for analysis of neurophysiology data, with emphasis on patch-clamp electrophysiology. Functions for runnin

Allen Institute 5 Dec 22, 2021
Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.

Hatchet Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data. It is intended for analyzing

Lawrence Livermore National Laboratory 14 Aug 19, 2022
Kennedy Institute of Rheumatology University of Oxford Project November 2019

TradingBot6M Kennedy Institute of Rheumatology University of Oxford Project November 2019 Run Change api.txt to binance api key: https://www.binance.c

Kannan SAR 2 Nov 16, 2021
Open source platform for Data Science Management automation

Hydrosphere examples This repo contains demo scenarios and pre-trained models to show Hydrosphere capabilities. Data and artifacts management Some mod

hydrosphere.io 6 Aug 10, 2021