Deeplearning project at The Technological University of Denmark (DTU) about Neural ODEs for finding dynamics in ordinary differential equations and real world time series data

Overview

Authors

Marcus Lenler Garsdal, [email protected]

Valdemar Søgaard, [email protected]

Simon Moe Sørensen, [email protected]

Introduction

This repo contains the code used for the paper Time series data estimation using Neural ODE in Variational Auto Encoders.

Using pytorch and Neural ODEs (NODEs) it attempts to learn the true dynamics of time series data using toy examples such as clockwise and counterclockwise spirals, and three different examples of sine waves: first a standard non-dampened sine wave, second a dampened sine wave, third an exponentially decaying and dampened sine wave. Finally, the NODE is trained on real world time series data of solar power curves.

The performance of the NODEs are compared to an LSTM VAE baseline on RMSE error and time per epoch.

This project is a purely research and curiosity based project.

Code structure

To make development and research more seamless, an object-oriented approach was taken to improve efficiency and consistency across multiple runs. This also makes it easier to extend and change workflows across multiple models at once.

Source files

The src folder contains the source code. The main components of the source code are:

  • data.py: Data loading object. Primarily uses data generation functions.
  • model.py: Contains model implementations and the abstract TrainerModel class which defines models in the trainer.py file.
  • train.py: A generalized Trainer class used to train subclasses of the TrainerModel class. Moreover, it saves and loads different types of models and handles model visualizations.
  • utils.py: Standard utility functions
  • visualize.py: Visualizes model properties such as reconstructions, loss curves and original data samples

Experiments

In addition, there are three folders for each type of dataset:

  • real/: Contains data for solar power curves and main script for training the solar power model
  • spring/: Generates spring examples and trains spring models
  • toy/: Generates spiral examples and trains spiral models

Each main.py script takes a number of relevant parameters as input to enable parameter tuning, experimentation of different model types, dataset sizes and types. These can be read from the respective files.

Running the code

To run the code use the following code in a terminal with the project root as working directory: python -m src.[dataset].main [--args]

For example: python3 -m src.toy.main --epochs 1000 --freq 100 --num-data 500 --n-total 300 --n-sample 200 --n-skip 1 --latent-dim 4 --hidden-dim 30 --lstm-hidden-dim 45 --lstm-layers 2 --lr 0.001 --solver rk4

Setup environment

Create a new python environment and install the packages from requirements.txt using

pip install -r requirements.txt

Run python notebook

Install Jupyter with pip install jupyter and run a server using jupyter notebook or any supported software such as Anaconda.

Then open run_experiments.ipynb and run the first cell. If the cell succeeds, you should see outputs in experiment/output/png/**

Owner
Simon Moe Sørensen
Studying MSc Business Analytics - Predictive Modelling at DTU
Simon Moe Sørensen
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022