Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Overview

Lightning ASR

Modular and extensible speech recognition library leveraging pytorch-lightning and hydra


What is Lightning ASRInstallationGet StartedDocsCodefactorLicense


Introduction

PyTorch Lightning is the lightweight PyTorch wrapper for high-performance AI research. PyTorch is extremely easy to use to build complex AI models. But once the research gets complicated and things like multi-GPU training, 16-bit precision and TPU training get mixed in, users are likely to introduce bugs. PyTorch Lightning solves exactly this problem. Lightning structures your PyTorch code so it can abstract the details of training. This makes AI research scalable and fast to iterate on.

This project is an example that implements the asr project with PyTorch Lightning. In this project, I trained a model consisting of a conformer encoder + LSTM decoder with Joint CTC-Attention. I hope this could be a guideline for those who research speech recognition.

Installation

This project recommends Python 3.7 or higher.
I recommend creating a new virtual environment for this project (using virtual env or conda).

Prerequisites

  • numpy: pip install numpy (Refer here for problem installing Numpy).
  • pytorch: Refer to PyTorch website to install the version w.r.t. your environment.
  • librosa: conda install -c conda-forge librosa (Refer here for problem installing librosa)
  • torchaudio: pip install torchaudio==0.6.0 (Refer here for problem installing torchaudio)
  • sentencepiece: pip install sentencepiece (Refer here for problem installing sentencepiece)
  • pytorch-lightning: pip install pytorch-lightning (Refer here for problem installing pytorch-lightning)
  • hydra: pip install hydra-core --upgrade (Refer here for problem installing hydra)

Install from source

Currently I only support installation from source code using setuptools. Checkout the source code and run the
following commands:

$ pip install -e .
$ ./setup.sh

Install Apex (for 16-bit training)

For faster training install NVIDIA's apex library:

$ git clone https://github.com/NVIDIA/apex
$ cd apex

# ------------------------
# OPTIONAL: on your cluster you might need to load CUDA 10 or 9
# depending on how you installed PyTorch

# see available modules
module avail

# load correct CUDA before install
module load cuda-10.0
# ------------------------

# make sure you've loaded a cuda version > 4.0 and < 7.0
module load gcc-6.1.0

$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Get Started

I use Hydra to control all the training configurations. If you are not familiar with Hydra I recommend visiting the Hydra website. Generally, Hydra is an open-source framework that simplifies the development of research applications by providing the ability to create a hierarchical configuration dynamically.

Download LibriSpeech dataset

You have to download LibriSpeech dataset that contains 1000h English speech corpus. But you can download simply by dataset_download option. If this option is True, download the dataset and start training. If you already have a dataset, you can set option dataset_download to False and specify dataset_path.

Training Speech Recognizer

You can simply train with LibriSpeech dataset like below:

  • Example1: Train the conformer-lstm model with filter-bank features on GPU.
$ python ./bin/main.py \
data=default \
dataset_download=True \
audio=fbank \
model=conformer_lstm \
lr_scheduler=reduce_lr_on_plateau \
trainer=gpu
  • Example2: Train the conformer-lstm model with mel-spectrogram features On TPU:
$ python ./bin/main.py \
data=default \
dataset_download=True \
audio=melspectrogram \
model=conformer_lstm \
lr_scheduler=reduce_lr_on_plateau \
trainer=tpu

Troubleshoots and Contributing

If you have any questions, bug reports, and feature requests, please open an issue on Github.

I appreciate any kind of feedback or contribution. Feel free to proceed with small issues like bug fixes, documentation improvement. For major contributions and new features, please discuss with the collaborators in corresponding issues.

Code Style

I follow PEP-8 for code style. Especially the style of docstrings is important to generate documentation.

License

This project is licensed under the MIT LICENSE - see the LICENSE.md file for details

Author

You might also like...
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic

An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Comments
  • incorrect spm params

    incorrect spm params

    python prepare_libri.py --dataset_path ../../data/lasr/libri/LibriSpeech --vocab_size 5000
    sentencepiece_trainer.cc(177) LOG(INFO) Running command: --input=spm_input.txt --model_prefix=tokenizer --vocab_size=5000 --model_type=unigram --pad_id=0 --bos_id=1 --eos_id=2
    sentencepiece_trainer.cc(77) LOG(INFO) Starts training with :
    trainer_spec {
      input: spm_input.txt
      input_format:
      model_prefix: tokenizer
      model_type: UNIGRAM
      vocab_size: 5000
      self_test_sample_size: 0
      character_coverage: 0.9995
      input_sentence_size: 0
      shuffle_input_sentence: 1
      seed_sentencepiece_size: 1000000
      shrinking_factor: 0.75
      max_sentence_length: 4192
      num_threads: 16
      num_sub_iterations: 2
      max_sentencepiece_length: 16
      split_by_unicode_script: 1
      split_by_number: 1
      split_by_whitespace: 1
      split_digits: 0
      treat_whitespace_as_suffix: 0
      required_chars:
      byte_fallback: 0
      vocabulary_output_piece_score: 1
      train_extremely_large_corpus: 0
      hard_vocab_limit: 1
      use_all_vocab: 0
      unk_id: 0
      bos_id: 1
      eos_id: 2
      pad_id: 0
      unk_piece: <unk>
      bos_piece: <s>
      eos_piece: </s>
      pad_piece: <pad>
      unk_surface:  ⁇
    }
    normalizer_spec {
      name: nmt_nfkc
      add_dummy_prefix: 1
      remove_extra_whitespaces: 1
      escape_whitespaces: 1
      normalization_rule_tsv:
    }
    denormalizer_spec {}
    Traceback (most recent call last):
      File "prepare_libri.py", line 65, in <module>
        main()
      File "prepare_libri.py", line 58, in main
        prepare_tokenizer(transcripts_collection[0], opt.vocab_size)
      File "lasr/dataset/preprocess.py", line 71, in prepare_tokenizer
        spm.SentencePieceTrainer.Train(cmd)
      File "anaconda3/envs/lasr/lib/python3.7/site-packages/sentencepiece/__init__.py", line 407, in Train
        return SentencePieceTrainer._TrainFromString(arg)
      File "anaconda3/envs/lasr/lib/python3.7/site-packages/sentencepiece/__init__.py", line 385, in _TrainFromString
        return _sentencepiece.SentencePieceTrainer__TrainFromString(arg)
    RuntimeError: Internal: /home/conda/feedstock_root/build_artifacts/sentencepiece_1612846348604/work/src/trainer_interface.cc(666) [insert_id(trainer_spec_.pad_id(), trainer_spec_.pad_piece())]
    
    
    opened by szalata 3
Releases(v0.1)
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
Easy-to-use CPM for Chinese text generation

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

382 Jan 07, 2023
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Edge-Augmented Graph Transformer

Edge-augmented Graph Transformer Introduction This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https:

Md Shamim Hussain 21 Dec 14, 2022
뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

뉴스 도메인 질의응답 시스템 본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로

TaegyeongEo 4 Jul 08, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
Leon is an open-source personal assistant who can live on your server.

Leon Your open-source personal assistant. Website :: Documentation :: Roadmap :: Contributing :: Story 👋 Introduction Leon is an open-source personal

Leon AI 11.7k Dec 30, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
nlp基础任务

NLP算法 说明 此算法仓库包括文本分类、序列标注、关系抽取、文本匹配、文本相似度匹配这五个主流NLP任务,涉及到22个相关的模型算法。 框架结构 文件结构 all_models ├── Base_line │   ├── __init__.py │   ├── base_data_process.

zuxinqi 23 Sep 22, 2022
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022
Let Xiao Ai speakers control third-party devices

A stupid way to extend miot/xiaoai. Demo for Panasonic Bath Bully FV-RB20VL1 逆向 Panasonic Smart China,获得控制浴霸的请求信息(HTTP 请求),详见 apps/panasonic.py; 2. 通过

bin 14 Jul 07, 2022
Grover is a model for Neural Fake News -- both generation and detectio

Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.

Rowan Zellers 856 Dec 24, 2022
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023