ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Related tags

Deep LearningColBERT
Overview

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api.

ColBERT

ColBERT is a fast and accurate retrieval model, enabling scalable BERT-based search over large text collections in tens of milliseconds.

Figure 1: ColBERT's late interaction, efficiently scoring the fine-grained similarity between a queries and a passage.

As Figure 1 illustrates, ColBERT relies on fine-grained contextual late interaction: it encodes each passage into a matrix of token-level embeddings (shown above in blue). Then at search time, it embeds every query into another matrix (shown in green) and efficiently finds passages that contextually match the query using scalable vector-similarity (MaxSim) operators.

These rich interactions allow ColBERT to surpass the quality of single-vector representation models, while scaling efficiently to large corpora. You can read more in our papers:


Installation

ColBERT (currently: v0.2.0) requires Python 3.7+ and Pytorch 1.6+ and uses the HuggingFace Transformers library.

We strongly recommend creating a conda environment using:

conda env create -f conda_env.yml
conda activate colbert-v0.2

If you face any problems, please open a new issue and we'll help you promptly!

Overview

Using ColBERT on a dataset typically involves the following steps.

Step 0: Preprocess your collection. At its simplest, ColBERT works with tab-separated (TSV) files: a file (e.g., collection.tsv) will contain all passages and another (e.g., queries.tsv) will contain a set of queries for searching the collection.

Step 1: Train a ColBERT model. You can train your own ColBERT model and validate performance on a suitable development set.

Step 2: Index your collection. Once you're happy with your ColBERT model, you need to index your collection to permit fast retrieval. This step encodes all passages into matrices, stores them on disk, and builds data structures for efficient search.

Step 3: Search the collection with your queries. Given your model and index, you can issue queries over the collection to retrieve the top-k passages for each query.

Below, we illustrate these steps via an example run on the MS MARCO Passage Ranking task.

Data

This repository works directly with a simple tab-separated file format to store queries, passages, and top-k ranked lists.

  • Queries: each line is qid \t query text.
  • Collection: each line is pid \t passage text.
  • Top-k Ranking: each line is qid \t pid \t rank.

This works directly with the data format of the MS MARCO Passage Ranking dataset. You will need the training triples (triples.train.small.tar.gz), the official top-1000 ranked lists for the dev set queries (top1000.dev), and the dev set relevant passages (qrels.dev.small.tsv). For indexing the full collection, you will also need the list of passages (collection.tar.gz).

Training

Training requires a list of <query, positive passage, negative passage> tab-separated triples.

You can supply full-text triples, where each line is query text \t positive passage text \t negative passage text. Alternatively, you can supply the query and passage IDs as a JSONL file [qid, pid+, pid-] per line, in which case you should specify --collection path/to/collection.tsv and --queries path/to/queries.train.tsv.

CUDA_VISIBLE_DEVICES="0,1,2,3" \
python -m torch.distributed.launch --nproc_per_node=4 -m \
colbert.train --amp --doc_maxlen 180 --mask-punctuation --bsize 32 --accum 1 \
--triples /path/to/MSMARCO/triples.train.small.tsv \
--root /root/to/experiments/ --experiment MSMARCO-psg --similarity l2 --run msmarco.psg.l2

You can use one or more GPUs by modifying CUDA_VISIBLE_DEVICES and --nproc_per_node.

Validation

Before indexing into ColBERT, you can compare a few checkpoints by re-ranking a top-k set of documents per query. This will use ColBERT on-the-fly: it will compute document representations during query evaluation.

This script requires the top-k list per query, provided as a tab-separated file whose every line contains a tuple queryID \t passageID \t rank, where rank is {1, 2, 3, ...} for each query. The script also accepts the format of MS MARCO's top1000.dev and top1000.eval and you can optionally supply relevance judgements (qrels) for evaluation. This is a tab-separated file whose every line has a quadruple <query ID, 0, passage ID, 1>, like qrels.dev.small.tsv.

Example command:

python -m colbert.test --amp --doc_maxlen 180 --mask-punctuation \
--collection /path/to/MSMARCO/collection.tsv \
--queries /path/to/MSMARCO/queries.dev.small.tsv \
--topk /path/to/MSMARCO/top1000.dev  \
--checkpoint /root/to/experiments/MSMARCO-psg/train.py/msmarco.psg.l2/checkpoints/colbert-200000.dnn \
--root /root/to/experiments/ --experiment MSMARCO-psg  [--qrels path/to/qrels.dev.small.tsv]

Indexing

For fast retrieval, indexing precomputes the ColBERT representations of passages.

Example command:

CUDA_VISIBLE_DEVICES="0,1,2,3" OMP_NUM_THREADS=6 \
python -m torch.distributed.launch --nproc_per_node=4 -m \
colbert.index --amp --doc_maxlen 180 --mask-punctuation --bsize 256 \
--checkpoint /root/to/experiments/MSMARCO-psg/train.py/msmarco.psg.l2/checkpoints/colbert-200000.dnn \
--collection /path/to/MSMARCO/collection.tsv \
--index_root /root/to/indexes/ --index_name MSMARCO.L2.32x200k \
--root /root/to/experiments/ --experiment MSMARCO-psg

The index created here allows you to re-rank the top-k passages retrieved by another method (e.g., BM25).

We typically recommend that you use ColBERT for end-to-end retrieval, where it directly finds its top-k passages from the full collection. For this, you need FAISS indexing.

FAISS Indexing for end-to-end retrieval

For end-to-end retrieval, you should index the document representations into FAISS.

python -m colbert.index_faiss \
--index_root /root/to/indexes/ --index_name MSMARCO.L2.32x200k \
--partitions 32768 --sample 0.3 \
--root /root/to/experiments/ --experiment MSMARCO-psg

Retrieval

In the simplest case, you want to retrieve from the full collection:

python -m colbert.retrieve \
--amp --doc_maxlen 180 --mask-punctuation --bsize 256 \
--queries /path/to/MSMARCO/queries.dev.small.tsv \
--nprobe 32 --partitions 32768 --faiss_depth 1024 \
--index_root /root/to/indexes/ --index_name MSMARCO.L2.32x200k \
--checkpoint /root/to/experiments/MSMARCO-psg/train.py/msmarco.psg.l2/checkpoints/colbert-200000.dnn \
--root /root/to/experiments/ --experiment MSMARCO-psg

You may also want to re-rank a top-k set that you've retrieved before with ColBERT or with another model. For this, use colbert.rerank similarly and additionally pass --topk.

If you have a large set of queries (or want to reduce memory usage), use batch-mode retrieval and/or re-ranking. This can be done by passing --batch --retrieve_only to colbert.retrieve and passing --batch --log-scores to colbert.rerank alongside --topk with the unordered.tsv output of this retrieval run.

Some use cases (e.g., building a user-facing search engines) require more control over retrieval. For those, you typically don't want to use the command line for retrieval. Instead, you want to import our retrieval API from Python and directly work with that (e.g., to build a simple REST API). Instructions for this are coming soon, but you will just need to adapt/modify the retrieval loop in colbert/ranking/retrieval.py#L33.

Releases

  • v0.2.0: Sep 2020
  • v0.1.0: June 2020
Owner
Stanford Future Data Systems
We are a CS research group at Stanford building data-intensive systems
Stanford Future Data Systems
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022