Various Algorithms for Short Text Mining

Overview

Short Text Mining in Python

CircleCI GitHub release Documentation Status Updates Python 3 pypi download stars

Introduction

This package shorttext is a Python package that facilitates supervised and unsupervised learning for short text categorization. Due to the sparseness of words and the lack of information carried in the short texts themselves, an intermediate representation of the texts and documents are needed before they are put into any classification algorithm. In this package, it facilitates various types of these representations, including topic modeling and word-embedding algorithms.

Since release 1.5.2, it runs on Python 3.9. Since release 1.5.0, support for Python 3.6 was decommissioned. Since release 1.2.4, it runs on Python 3.8. Since release 1.2.3, support for Python 3.5 was decommissioned. Since release 1.1.7, support for Python 2.7 was decommissioned. Since release 1.0.8, it runs on Python 3.7 with 'TensorFlow' being the backend for keras. Since release 1.0.7, it runs on Python 3.7 as well, but the backend for keras cannot be TensorFlow. Since release 1.0.0, shorttext runs on Python 2.7, 3.5, and 3.6.

Characteristics:

  • example data provided (including subject keywords and NIH RePORT);
  • text preprocessing;
  • pre-trained word-embedding support;
  • gensim topic models (LDA, LSI, Random Projections) and autoencoder;
  • topic model representation supported for supervised learning using scikit-learn;
  • cosine distance classification;
  • neural network classification (including ConvNet, and C-LSTM);
  • maximum entropy classification;
  • metrics of phrases differences, including soft Jaccard score (using Damerau-Levenshtein distance), and Word Mover's distance (WMD);
  • character-level sequence-to-sequence (seq2seq) learning;
  • spell correction;
  • API for word-embedding algorithm for one-time loading; and
  • Sentence encodings and similarities based on BERT.

Documentation

Documentation and tutorials for shorttext can be found here: http://shorttext.rtfd.io/.

See tutorial for how to use the package, and FAQ.

Installation

To install it, in a console, use pip.

>>> pip install -U shorttext

or, if you want the most recent development version on Github, type

>>> pip install -U git+https://github.com/stephenhky/[email protected]

Developers are advised to make sure Keras >=2 be installed. Users are advised to install the backend Tensorflow (preferred) or Theano in advance. It is desirable if Cython has been previously installed too.

See installation guide for more details.

Issues

To report any issues, go to the Issues tab of the Github page and start a thread. It is welcome for developers to submit pull requests on their own to fix any errors.

Contributors

If you would like to contribute, feel free to submit the pull requests. You can talk to me in advance through e-mails or the Issues page.

Useful Links

News

  • 07/11/2021: shorttext 1.5.3 released.
  • 07/06/2021: shorttext 1.5.2 released.
  • 04/10/2021: shorttext 1.5.1 released.
  • 04/09/2021: shorttext 1.5.0 released.
  • 02/11/2021: shorttext 1.4.8 released.
  • 01/11/2021: shorttext 1.4.7 released.
  • 01/03/2021: shorttext 1.4.6 released.
  • 12/28/2020: shorttext 1.4.5 released.
  • 12/24/2020: shorttext 1.4.4 released.
  • 11/10/2020: shorttext 1.4.3 released.
  • 10/18/2020: shorttext 1.4.2 released.
  • 09/23/2020: shorttext 1.4.1 released.
  • 09/02/2020: shorttext 1.4.0 released.
  • 07/23/2020: shorttext 1.3.0 released.
  • 06/05/2020: shorttext 1.2.6 released.
  • 05/20/2020: shorttext 1.2.5 released.
  • 05/13/2020: shorttext 1.2.4 released.
  • 04/28/2020: shorttext 1.2.3 released.
  • 04/07/2020: shorttext 1.2.2 released.
  • 03/23/2020: shorttext 1.2.1 released.
  • 03/21/2020: shorttext 1.2.0 released.
  • 12/01/2019: shorttext 1.1.6 released.
  • 09/24/2019: shorttext 1.1.5 released.
  • 07/20/2019: shorttext 1.1.4 released.
  • 07/07/2019: shorttext 1.1.3 released.
  • 06/05/2019: shorttext 1.1.2 released.
  • 04/23/2019: shorttext 1.1.1 released.
  • 03/03/2019: shorttext 1.1.0 released.
  • 02/14/2019: shorttext 1.0.8 released.
  • 01/30/2019: shorttext 1.0.7 released.
  • 01/29/2019: shorttext 1.0.6 released.
  • 01/13/2019: shorttext 1.0.5 released.
  • 10/03/2018: shorttext 1.0.4 released.
  • 08/06/2018: shorttext 1.0.3 released.
  • 07/24/2018: shorttext 1.0.2 released.
  • 07/17/2018: shorttext 1.0.1 released.
  • 07/14/2018: shorttext 1.0.0 released.
  • 06/18/2018: shorttext 0.7.2 released.
  • 05/30/2018: shorttext 0.7.1 released.
  • 05/17/2018: shorttext 0.7.0 released.
  • 02/27/2018: shorttext 0.6.0 released.
  • 01/19/2018: shorttext 0.5.11 released.
  • 01/15/2018: shorttext 0.5.10 released.
  • 12/14/2017: shorttext 0.5.9 released.
  • 11/08/2017: shorttext 0.5.8 released.
  • 10/27/2017: shorttext 0.5.7 released.
  • 10/17/2017: shorttext 0.5.6 released.
  • 09/28/2017: shorttext 0.5.5 released.
  • 09/08/2017: shorttext 0.5.4 released.
  • 09/02/2017: end of GSoC project. (Report)
  • 08/22/2017: shorttext 0.5.1 released.
  • 07/28/2017: shorttext 0.4.1 released.
  • 07/26/2017: shorttext 0.4.0 released.
  • 06/16/2017: shorttext 0.3.8 released.
  • 06/12/2017: shorttext 0.3.7 released.
  • 06/02/2017: shorttext 0.3.6 released.
  • 05/30/2017: GSoC project (Chinmaya Pancholi, with gensim)
  • 05/16/2017: shorttext 0.3.5 released.
  • 04/27/2017: shorttext 0.3.4 released.
  • 04/19/2017: shorttext 0.3.3 released.
  • 03/28/2017: shorttext 0.3.2 released.
  • 03/14/2017: shorttext 0.3.1 released.
  • 02/23/2017: shorttext 0.2.1 released.
  • 12/21/2016: shorttext 0.2.0 released.
  • 11/25/2016: shorttext 0.1.2 released.
  • 11/21/2016: shorttext 0.1.1 released.

Possible Future Updates

  • Dividing components to other packages;
  • More available corpus.
Comments
  • standalone ?

    standalone ?

    Hi. I have many questions.... :-)

    I'm a beginner for python. Is there any method to run the code standalone ?

    e.g. I trained my data. And I'd like to see the scores on terminal by classifier.score('apple') . The word 'apple' can be changed.

    Thank you regards,

    opened by chocosando 20
  • ImportError: No module named classification_exceptions

    ImportError: No module named classification_exceptions

    import shorttext

    
    ---------------------------------------------------------------------------
    ImportError                               Traceback (most recent call last)
    <ipython-input-5-cb09b3381050> in <module>()
    ----> 1 import shorttext
    
    /usr/local/lib/python2.7/dist-packages/shorttext/__init__.py in <module>()
          5 sys.path.append(thisdir)
          6 
    ----> 7 from . import utils
          8 from . import data
          9 from . import classifiers
    
    /usr/local/lib/python2.7/dist-packages/shorttext/utils/__init__.py in <module>()
          4 from . import textpreprocessing
          5 from .wordembed import load_word2vec_model
    ----> 6 from . import compactmodel_io
          7 
          8 from .textpreprocessing import spacy_tokenize as tokenize
    
    /usr/local/lib/python2.7/dist-packages/shorttext/utils/compactmodel_io.py in <module>()
         13 from functools import partial
         14 
    ---> 15 import utils.classification_exceptions as e
         16 
         17 def removedir(dir):
    
    ImportError: No module named classification_exceptions
    
    
    opened by spate141 11
  • ImportError: dlopen: cannot load any more object with static TLS

    ImportError: dlopen: cannot load any more object with static TLS

    Hi, I got the following error when i import shorttext, how shall i resolve?

    Using TensorFlow backend.

    I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcublas.so.7.5 locally I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcudnn.so.5 locally I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcufft.so.7.5 locally I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcuda.so.1 locally I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcurand.so.7.5 locally Traceback (most recent call last): File "", line 1, in File "/usr/local/lib/python2.7/dist-packages/shorttext/init.py", line 7, in from . import utils File "/usr/local/lib/python2.7/dist-packages/shorttext/utils/init.py", line 3, in from . import gensim_corpora File "/usr/local/lib/python2.7/dist-packages/shorttext/utils/gensim_corpora.py", line 2, in from .textpreprocessing import spacy_tokenize as tokenize File "/usr/local/lib/python2.7/dist-packages/shorttext/utils/textpreprocessing.py", line 5, in import spacy File "/usr/local/lib/python2.7/dist-packages/spacy/init.py", line 8, in from . import en, de, zh, es, it, hu, fr, pt, nl, sv, fi, bn, he File "/usr/local/lib/python2.7/dist-packages/spacy/en/init.py", line 4, in from ..language import Language File "/usr/local/lib/python2.7/dist-packages/spacy/language.py", line 12, in from .syntax.parser import get_templates ImportError: dlopen: cannot load any more object with static TLS

    opened by kenyeung128 8
  • extend score to take an array of shorttext

    extend score to take an array of shorttext

    Currently, score takes only a single input and as a result, the method is very slow if you are trying to classify thousands of examples. Is there a way you can generate scores for 10K+ samples at the same time.

    opened by rja172 6
  • Importing problem (not installation) over google colab

    Importing problem (not installation) over google colab

    I am experimenting with the library for the first time. The installation was successful and didn't need any extra steps. however when I started importing the library I got the following error related to keras:

    /usr/local/lib/python3.7/dist-packages/shorttext/generators/bow/AutoEncodingTopicModeling.py in () 8 from gensim.corpora import Dictionary 9 from keras import Input ---> 10 from keras.engine import Model 11 from keras.layers import Dense 12 from scipy.spatial.distance import cosine

    ImportError: cannot import name 'Model' from 'keras.engine' (/usr/local/lib/python3.7/dist-packages/keras/engine/init.py)

    I tried to install keras separately but no improvement. any suggestions would be appreciated.

    opened by yomnamahmoud 6
  • RuntimeWarning: overflow encountered in exp2 topicmodeler.train

    RuntimeWarning: overflow encountered in exp2 topicmodeler.train

    Code: trainclassdict = shorttext.data.nihreports(sample_size=None) topicmodeler = shorttext.generators.LDAModeler() topicmodeler.train(trainclassdict, 128) Error message: /lib/python2.7/site-packages/gensim/models/ldamodel.py:535: RuntimeWarning: overflow encountered in exp2 perwordbound, np.exp2(-perwordbound), len(chunk), corpus_words

    Then the results are variable for topicmodeler.retrieve_topicvec('stem cell research')

    opened by dbonner 6
  • Remove negation terms from stopwords.txt

    Remove negation terms from stopwords.txt

    I noticed that stopwords.txt includes negation terms such as "no" and "not". These terms revert the meaning of a word or a sentence, so they should be preserved in the text data. For example, "not a good idea" would become "good idea" after stopword removal. Therefore, I recommend removing negation terms from the stopword list. Thanks!

    opened by star1327p 5
  • Input to shorttext.generators.LDAModeler()

    Input to shorttext.generators.LDAModeler()

    I was wondering what should be the format of data as input for:

    shorttext.generators.LDAModeler() topicmodeler.train(data, 100)

    Can I feed it with a pandas column? Or it should be in a dictionary format? If a dictionary, what should be the keys? I have a large set of tweets.

    opened by malizad 5
  • from shorttext.classifiers import MaxEntClassifier is it regression?

    from shorttext.classifiers import MaxEntClassifier is it regression?

    seems to be maxent is a fancy word for regression or you do have something special in your maxent? https://www.quora.com/What-is-the-relationship-between-Log-Linear-model-MaxEnt-model-and-Logistic-Regression or https://en.wikipedia.org/wiki/Multinomial_logistic_regression

    Multinomial logistic regression is known by a variety of other names, including polytomous LR,[2][3] multiclass LR, softmax regression, multinomial logit, the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.[4]
    
    opened by Sandy4321 5
  • No Python 3.6 support with SciPy 1.6

    No Python 3.6 support with SciPy 1.6

    opened by Dobatymo 4
  • Data nihreports not available anymore

    Data nihreports not available anymore

    Some datasets are not available anymore.

    For example the following: nihtraindata = shorttext.data.nihreports(sample_size=None)

    Error message:

    Downloading...
    Source:  http://storage.googleapis.com/pyshorttext/nih_grant_public/nih_full.csv.zip
    Failure to download file!
    (<class 'urllib.error.HTTPError'>, <HTTPError 404: 'Not Found'>, <traceback object at 0x7f09063ed788>)
    

    Python error:

    HTTPError: HTTP Error 404: Not Found
    
    During handling of the above exception, another exception occurred:
    

    When opening the link the same error appears:

    image

    opened by AlessandroVol23 4
Releases(1.5.8)
Owner
Kwan-Yuet "Stephen" Ho
quantitative research, machine learning, data science, text mining, physics
Kwan-Yuet
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
Reading Wikipedia to Answer Open-Domain Questions

DrQA This is a PyTorch implementation of the DrQA system described in the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions. Quick Link

Facebook Research 4.3k Jan 01, 2023
Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

PythonTextObfuscator Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Requi

2 Aug 29, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

MITRE Cybersecurity 64 Nov 22, 2022
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

steven.yan 121 Dec 27, 2022
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime

Pramook Khungurn 901 Jan 06, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
Unofficial Implementation of Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration

Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration This repo contains only model Implementation of Zero-Shot Text-to-Speech for Text

Rishikesh (ऋषिकेश) 33 Sep 22, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Saptak Bhoumik 14 May 24, 2022