Course materials for a 3-day seminar "Machine Learning and NLP: Advances and Applications" at New College of Florida

Overview

Machine Learning and NLP: Advances and Applications

This repository hosts the course materials used for a 3-day seminar "Machine Learning and NLP: Advances and Applications" as part of Independent Study Period 2020 at New College of Florida.

Note that the seminar was held in Jan 2020, and the content may be a little bit oudated (as of Feb 2022). Please also refer to a Fall 2021 full semester course "CIS6930 Topics in Computing for Data Science", which covers much wider (and a little bit newer) Deep Learning topics.

Syllabus

Course Description

This 3-day course provides students with an opportunity to learn Machine Learning and Natural Language Processing (NLP) from basics to applications. The course covers some state-of-the-art NLP techniques including Deep Learning. Each day consists of a lecture and a hands-on session to help students learn how to apply those techniques to real-world applications. During the hands-on session, students will be given assignments to develop programming code in Python. Three days are too short to fully understand the concepts that are covered by the course and learn to apply those techniques to actual problems. Students are strongly encouraged to complete reading assignments before the lecture to be ready for the course assignments, and bring a lot of questions to the course. :)

Learning Objectives

Students successfully completing the course will

  • demonstrate the ability to apply machine learning and natural language processing techniques to various types of problems.
  • demonstrate the ability to build their own machine learning models using Python libraries.
  • demonstrate the ability to read and understand research papers in ML and NLP.

Course Outline

  • Wed 1/22 Day 1: Machine Learning basics [Slides]

    • Machine learning examples
    • Problem formulation
    • Evaluation and hyper-parameter tuning
    • Data Processing basics with pandas
    • Machine Learning with scikit-learn
    • Hands-on material: [ipynb] Open In Colab
  • Thu 1/23 Day 2: NLP basics [Slides]

    • Unsupervised learning and visualization
    • Topic models
    • NLP basics with SpaCy and NLTK
    • Understanding NLP pipeline for feature extraction
    • Machine learning for NLP tasks (text classification, sequential tagging)
    • Hands-on material [ipynb] Open In Colab
    • Follow-up
      • Commonsense Reasoning (Winograd Schema Challenge)
  • Fri 1/24 Day 3: Advanced techniques and applications [Slides]

    • Basic Deep Learning techniques
    • Word embeddings
    • Advanced Deep Learning techniques for NLP
    • Problem formulation and applications to (non-)NLP tasks
    • Pre-training models: ELMo and BERT
    • Hands-on material: [ipynb] Open In Colab
    • Follow-up
      • The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time
      • Cross-lingual word/sentence embeddings

Reading Assignments & Recommendations:

The following online tutorials for students who are not familiar with the Python libraries used in the course. Each day will have a hands-on session that requires those libraries. Please do not expect to have enough time to learn how to use those libraries during the lecture.

The following list is a good starting point.

The course will cover the following papers as examples of (non-NLP) applications (probably in Day 3.) Students who'd like to learn how to apply Deep Learning techniques to your own problems are encouraged to read the following papers.

  • [1] A. Asai, S. Evensen, B. Golshan, A. Halevy, V. Li, A. Lopatenko, D. Stepanov, Y. Suhara, W.-C. Tan, Y. Xu, "HappyDB: A Corpus of 100,000 Crowdsourced Happy Moments" Proc LREC 18, 2018. [Paper] [Dataset]
  • [2] S. Evensen, Y. Suhara, A. Halevy, V. Li, W.-C. Tan, S. Mumick, "Happiness Entailment: Automating Suggestions for Well-Being," Proc. ACII 2019, 2019. [Paper]
  • [3] Y. Suhara, Y. Xu, A. Pentland, "DeepMood: Forecasting Depressed Mood Based on Self-Reported Histories via Recurrent Neural Networks," Proc. WWW '17, 2017. [Paper]
  • [4] N. Bhutani, Y. Suhara, W.-C. Tan, A. Halevy, H. V. Jagadish, "Open Information Extraction from Question-Answer Pairs," Proc. NAACL-HLT 2019, 2019. [Paper]

Computing Resources:

The course requires students to write code:

  • Students are expected to have a personal computer at their disposal. Students should have a Python interpreter and the listed libraries installed on their machines.

The hands-on sessions will require the following Python libraries. Please install those libraries on your computer prior to the course. See also the reading assignment section for the recommended tutorials.

  • pandas
  • scikit-learn
  • gensim
  • spacy
  • nltk
  • torch (PyTorch)
Owner
Yoshi Suhara
Yoshi Suhara
UdemyPy is a bot that hourly looks for Udemy free courses and post them in my Telegram Channel: Free Courses.

UdemyPy UdemyPy is a bot that hourly looks for Udemy free courses and post them in my Telegram Channel: Free Courses. How does it work? For publishing

88 Dec 25, 2022
Arabic to Roman Converter in Python

Arabic-to-Roman-Converter Made together with https://github.com/goltaraya . Arabic to Roman Converter in Python. -Instructions: 1 - Make sure you have

Pedro Lucas Tomazeti Fernandes 6 Oct 28, 2021
pyreports is a python library that allows you to create complex report from various sources

pyreports pyreports is a python library that allows you to create complex reports from various sources such as databases, text files, ldap, etc. and p

Matteo Guadrini aka GU 78 Dec 13, 2022
Ellipitical Curve Table Generator

Ellipitical-Curve-Table-Generator This script generates a table of elliptical po

Nishaant Goswamy 1 Jan 02, 2022
Pdraw - Generate Deterministic, Procedural Artwork from Arbitrary Text

pdraw.py: Generate Deterministic, Procedural Artwork from Arbitrary Text pdraw a

Brian Schrader 2 Sep 12, 2022
Chemical Analysis Calculator, with full solution display.

Chemicology Chemical Analysis Calculator, to solve problems efficiently by displaying whole solution. Go to releases for downloading .exe, .dmg, Linux

Muhammad Moazzam 2 Aug 06, 2022
Simple Wayland HotKey Daemon

swhkd Simple Wayland HotKey Daemon This project is still very new and I'm making new decisions everyday as to where I should drive this project. I'm u

Aakash Sen Sharma 407 Dec 30, 2022
redun aims to be a more expressive and efficient workflow framework

redun yet another redundant workflow engine redun aims to be a more expressive and efficient workflow framework, built on top of the popular Python pr

insitro 372 Jan 04, 2023
Inacap - Programa para pasar las notas de inacap a una hoja de cálculo rápidamente.

Inacap Programa en python para obtener varios datos académicos desde inacap y subirlos directamente a una hoja de cálculo. Cómo funciona Primero que n

Gabriel Barrientos 0 Jul 28, 2022
Repositório do programa ConstruDelas - Trilha Python - Módulos 1 e 2

ConstruDelas - Introdução ao Python Nome: Visão Geral Bem vinda ao repositório do curso ConstruDelas, módulo de Introdução ao Python. Aqui vamos mante

WoMakersCode 8 Oct 14, 2022
Make dbt docs and Apache Superset talk to one another

dbt-superset-lineage Make dbt docs and Apache Superset talk to one another Why do I need something like this? Odds are rather high that you use dbt to

Slido 81 Jan 06, 2023
Entitlement AND Hardened Runtime Check

Python3 script for macOS to recursively check /Applications and also check /usr/local/bin, /usr/bin, and /usr/sbin for binaries with problematic/interesting entitlements. Also checks for hardened run

Cedric Owens 79 Nov 16, 2022
Rotazioni: a linear programming workout split optimizer

Rotazioni: a linear programming workout split optimizer Dependencies Dependencies for the frontend and backend are respectively listed in client/packa

Marco 3 Oct 13, 2022
SymbLang are my programming language! Insired by the brainf**k.

SymbLang . - output as Unicode. , - input. ; - clear data. & - character that the main line start with. @value: 0 - 9 - character that the function

1 Apr 04, 2022
Write-ups for CTF Internacional MetaRed 2021 5th stage

MetaRed2021-5th-Writeups Write-ups for CTF Internacional MetaRed 2021 5th stage Easy (15) No Status Category Name Creator(s) 01 Done osint Cybersecuri

UA Cybersecurity 2 Dec 22, 2021
EFB Docker image with efb-telegram-master and efb-wechat-slave

efb-wechat-docker EFB Docker image with efb-telegram-master and efb-wechat-slave Features Container run by non-root user. Support add environment vari

Haukeng 1 Nov 10, 2022
oracle arm registration script.

oracle_arm oracle arm registration script. 乌龟壳刷ARM脚本 本脚本优点 简单,主机配置好oci,然后下载main.tf即可,不用自己获取各种参数。 运行环境配置 本简单脚本使用python3编写,请自行配置好python3环境和requests库。(高版

test1234455 419 Jan 01, 2023
Insights in greek football league 2020-2021 and bookmaker's accuracy

Greek_Football_League_Analysis_2020_2021 Aim of Project: This project aims in deriving useful insights from greek football league 2020-2021 by mean st

2 Jan 16, 2022
Automatically re-open threads when they get archived, no matter your boost level!

ThreadPersist Automatically re-open threads when they get archived, no matter your boost level! Installation You will need to install poetry to run th

7 Sep 18, 2022
Fastest python library for making asynchronous group requests.

FGrequests: Fastest Asynchronous Group Requests Installation Install using pip: pip install fgrequests Documentation Pretty easy to use. import fgrequ

Farid Chowdhury 14 Nov 22, 2022