Single machine, multiple cards training; mix-precision training; DALI data loader.

Overview

Template

Script Category Description

Category script
comparison script train.py, loader.py
for single-machine-multiple-cards training train_DP.py, train_DDP.py
for mixed-precision training train_amp.py
for DALI data loading loader_DALI.py

Note: The comment # new # in script represents newly added code block (compare to comparison script, e.g., train.py)

Environment

  • CPU: Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
  • GPU: RTX 2080Ti
  • OS: Ubuntu 18.04.3 LTS
  • DL framework: Pytorch 1.6.0, Torchvision 0.7.0

Single-machine-multiple-cards training (two cards for example)

train_DP.py -- Parallel computing using nn.DataParallel

Usage:

cd Template/src
python train_DP.py

Superiority:
- Easy to use
- Accelerate training (inconspicuous)
Weakness:
- Unbalanced load
Description:
DataParallel is very convenient to use, we just need to use DataParallel to package the model:

model = ...
model = nn.DataParallel(model)

train_DDP.py -- Parallel computing using torch.distributed

Usage:

cd Template/src
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train_DDP.py

Superiority:
- balanced load
- Accelerate training (conspicuous)
Weakness:
- Hard to use
Description:
Unlike DataParallel who control multiple GPUs via single-process, distributed creates multiple process. we just need to accomplish one code and torch will automatically assign it to n processes, each running on corresponding GPU.
To config distributed model via torch.distributed, the following steps needed to be performed:

  1. Get current process index:
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
opt = parser.parse_args()
# print(opt.local_rank)
  1. Set the backend and port used for communication between GPUs:
dist.init_process_group(backend='nccl')
  1. Config current device according to the local_rank:
torch.cuda.set_device(opt.local_rank)
  1. Config data sampler:
dataset = ...
sampler = distributed.DistributedSampler(dataset)
dataloader = DataLoader(dataset=dataset, ..., sampler=sampler)
  1. Package the model:
model = ...
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = nn.parallel.DistributedDataParallel(model.cuda(), device_ids=[opt.local_rank])

Mixed-precision training

train_amp.py -- Mixed-precision training using torch.cuda.amp

Usage:

cd Template/src
python train_amp.py

Superiority:
- Easy to use
- Accelerate training (conspicuous for heavy model)
Weakness:
- Accelerate training (inconspicuous for light model)
Description:
Mixed-precision training is a set of techniques that allows us to use fp16 without causing our model training to diverge.
To config mixed-precision training via torch.cuda.amp, the following steps needed to be performed:

  1. Instantiate GradScaler object:
scaler = torch.cuda.amp.GradScaler()
  1. Modify the traditional optimization process:
# Before:
optimizer.zero_grad()
preds = model(imgs)
loss = loss_func(preds, labels)
loss.backward()
optimizer.step()

# After:
optimizer.zero_grad()
with torch.cuda.amp.autocast():
    preds = model(imgs)
    loss = loss_func(preds, labels)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()

DALI data loading

loader_DALI.py -- Data loading using nvidia.dali

Prerequisite:
- NVIDIA Driver supporting CUDA 10.0 or later (i.e., 410.48 or later driver releases)
- PyTorch 0.4 or later
- Data organization format that matches the code, the format that matches the loader_DALI.py is as follows:
 /dataset / train or test / img or gt / sub_dirs / imgs [View]
Usage:

pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-cuda102
cd Template/src
python loader_DALI.py --data_source /path/to/dataset

Superiority:
- Easy to use
- Accelerate data loading
Weakness:
- Occupy video memory
Description:
NVIDIA Data Loading Library (DALI) is a collection of highly optimized building blocks and an execution engine that accelerates the data pipeline for computer vision and audio deep learning applications.
To load dataset using DALI, the following steps needed to be performed:

  1. Config external input iterator:
eii = ExternalInputIterator(data_source=opt.data_source, batch_size=opt.batch_size, shuffle=True)
# A demo of external input iterator
class ExternalInputIterator(object):
    def __init__(self, data_source, batch_size, shuffle):
        self.batch_size = batch_size
        
        img_paths = sorted(glob.glob(data_source + '/train' + '/blurry' + '/*/*.*'))
        gt_paths = sorted(glob.glob(data_source + '/train' + '/sharp' + '/*/*.*'))
        self.paths = list(zip(*(img_paths,gt_paths)))
        if shuffle:
            random.shuffle(self.paths)

    def __iter__(self):
        self.i = 0
        return self

    def __next__(self):
        imgs = []
        gts = []

        if self.i >= len(self.paths):
            self.__iter__()
            raise StopIteration

        for _ in range(self.batch_size):
            img_path, gt_path = self.paths[self.i % len(self.paths)]
            imgs.append(np.fromfile(img_path, dtype = np.uint8))
            gts.append(np.fromfile(gt_path, dtype = np.uint8))
            self.i += 1
        return (imgs, gts)

    def __len__(self):
        return len(self.paths)

    next = __next__
  1. Config pipeline:
pipe = externalSourcePipeline(batch_size=opt.batch_size, num_threads=opt.num_workers, device_id=0, seed=opt.seed, external_data = eii, resize=opt.resize, crop=opt.crop)
# A demo of pipeline
@pipeline_def
def externalSourcePipeline(external_data, resize, crop):
    imgs, gts = fn.external_source(source=external_data, num_outputs=2)
    
    crop_pos = (fn.random.uniform(range=(0., 1.)), fn.random.uniform(range=(0., 1.)))
    flip_p = (fn.random.coin_flip(), fn.random.coin_flip())
    
    imgs = transform(imgs, resize, crop, crop_pos, flip_p)
    gts = transform(gts, resize, crop, crop_pos, flip_p)
    return imgs, gts

def transform(imgs, resize, crop, crop_pos, flip_p):
    imgs = fn.decoders.image(imgs, device='mixed')
    imgs = fn.resize(imgs, resize_y=resize)
    imgs = fn.crop(imgs, crop=(crop,crop), crop_pos_x=crop_pos[0], crop_pos_y=crop_pos[1])
    imgs = fn.flip(imgs, horizontal=flip_p[0], vertical=flip_p[1])
    imgs = fn.transpose(imgs, perm=[2, 0, 1])
    imgs = imgs/127.5-1
    
    return imgs
  1. Instantiate DALIGenericIterator object:
dgi = DALIGenericIterator(pipe, output_map=["imgs", "gts"], last_batch_padded=True, last_batch_policy=LastBatchPolicy.PARTIAL, auto_reset=True)
  1. Read data:
for i, data in enumerate(dgi):
    imgs = data[0]['imgs']
    gts = data[0]['gts']
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
Weather Image Recognition - Python weather application using series of data

Weather Image Recognition - Python weather application using series of data

Kushal Shingote 1 Feb 04, 2022
Python implementation of Principal Component Analysis

Principal Component Analysis Principal Component Analysis (PCA) is a dimension-reduction algorithm. The idea is to use the singular value decompositio

Ignacio Darago 1 Nov 06, 2021
Ejercicios Panda usando Pandas

Readme Below we add configuration details to locally test your application To co

1 Jan 22, 2022
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.

Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis

Blei Lab 4.7k Jan 09, 2023
Includes all files needed to satisfy hw02 requirements

HW 02 Data Sets Mean Scale Score for Asian and Hispanic Students, Grades 3 - 8 This dataset provides insights into the New York City education system

7 Oct 28, 2021
Data science/Analysis Health Care Portfolio

Health-Care-DS-Projects Data Science/Analysis Health Care Portfolio Consists Of 3 Projects: Mexico Covid-19 project, analyze the patient medical histo

Mohamed Abd El-Mohsen 1 Feb 13, 2022
Data Science Environment Setup in single line

datascienv is package that helps your to setup your environment in single line of code with all dependency and it is also include pyforest that provide single line of import all required ml libraries

Ashish Patel 55 Dec 16, 2022
Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle.

2019-indian-election-eda Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle. This project is a part of the Cou

Souradeep Banerjee 5 Oct 10, 2022
Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apac

Chris Carbonell 1 Dec 03, 2021
Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

John McCambridge 79 Sep 20, 2022
MDAnalysis is a Python library to analyze molecular dynamics simulations.

MDAnalysis Repository README [*] MDAnalysis is a Python library for the analysis of computer simulations of many-body systems at the molecular scale,

MDAnalysis 933 Dec 28, 2022
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an

PyMC 7.2k Dec 30, 2022
Manage large and heterogeneous data spaces on the file system.

signac - simple data management The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, and reproduc

Glotzer Group 109 Dec 14, 2022
This is a python script to navigate and extract the FSD50K dataset

FSD50K navigator This is a script I use to navigate the sound dataset from FSK50K.

sweemeng 2 Nov 23, 2021
follow-analyzer helps GitHub users analyze their following and followers relationship

follow-analyzer follow-analyzer helps GitHub users analyze their following and followers relationship by providing a report in html format which conta

Yin-Chiuan Chen 2 May 02, 2022
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
A model checker for verifying properties in epistemic models

Epistemic Model Checker This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralisti

Thomas Träff 2 Dec 22, 2021
INFO-H515 - Big Data Scalable Analytics

INFO-H515 - Big Data Scalable Analytics Jacopo De Stefani, Giovanni Buroni, Théo Verhelst and Gianluca Bontempi - Machine Learning Group Exercise clas

Yann-Aël Le Borgne 58 Dec 11, 2022
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Damien Farrell 81 Dec 26, 2022