MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

Overview

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

This repository contains the implementation of our paper MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images.

You can find detailed usage instructions for training your own models and using pretrained models below.

If you find our code useful, please cite:

@InProceedings{MetaAvatar:NeurIPS:2021,
  title = {MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images},
  author = {Shaofei Wang and Marko Mihajlovic and Qianli Ma and Andreas Geiger and Siyu Tang},
  booktitle = {Advances in Neural Information Processing Systems},
  year = {2021}
}

Installation

This repository has been tested on the following platform:

  1. Python 3.7, PyTorch 1.7.1 with CUDA 10.2 and cuDNN 7.6.5, Ubuntu 20.04

To clone the repo, run either:

git clone --recursive https://github.com/taconite/MetaAvatar-release.git

or

git clone https://github.com/taconite/MetaAvatar-release.git
git submodule update --init --recursive

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called meta-avatar using

conda env create -f environment.yml
conda activate meta-avatar

(Optional) if you want to use the evaluation code under evaluation/, then you need to install kaolin. Download the code from the kaolin repository, checkout to commit e7e513173bd4159ae45be6b3e156a3ad156a3eb9 and install it according to the instructions.

Build the dataset

To prepare the dataset for training/fine-tuning/evaluation, you have to first download the CAPE dataset from the CAPE website.

  1. Download SMPL v1.0, clean-up the chumpy objects inside the models using this code, and rename the files and extract them to ./body_models/smpl/, eventually, the ./body_models folder should have the following structure:
    body_models
     └-- smpl
     	├-- male
     	|   └-- model.pkl
     	└-- female
     	    └-- model.pkl
    
    

(Optional) if you want to use the evaluation code under evaluation/, then you need to download all the .pkl files from IP-Net repository and put them under ./body_models/misc/.

Finally, run the following script to extract necessary SMPL parameters used in our code:

python extract_smpl_parameters.py

The extracted SMPL parameters will be save into ./body_models/misc/.

  1. Extract CAPE dataset to an arbitrary path, denoted as ${CAPE_ROOT}. The extracted dataset should have the following structure:
    ${CAPE_ROOT}
     ├-- 00032
     ├-- 00096
     |   ...
     ├-- 03394
     └-- cape_release
    
    
  2. Create data directory under the project directory.
  3. Modify the parameters in preprocess/build_dataset.sh accordingly (i.e. modify the --dataset_path to ${CAPE_ROOT}) to extract training/fine-tuning/evaluation data.
  4. Run preprocess/build_dataset.sh to preprocess the CAPE dataset.

(Optional) if you want evaluate performance on interpolation task, then you need to process CAPE data again in order to generate processed data at full framerate. Simply comment the first command and uncomment the second command in preprocess/build_dataset.sh and run the script.

Pre-trained models

We provide pre-trained models, including 1) forward/backward skinning networks for full pointcloud (stage 0) 2) forward/backward skinning networks for depth pointcloud (stage 0) 3) meta-learned static SDF (stage 1) 3) meta-learned hypernetwork (stage 2) . After downloading them, please put them in respective folders under ./out/metaavatar.

Fine-tuning fromt the pre-trained model

We provide script to fine-tune subject/cloth-type specific avatars in batch. Simply run:

bash run_fine_tuning.sh

And it will conduct fine-tuning with default setting (subject 00122 with shortlong). You can comment/uncomment/add lines in jobs/splits to modify data splits.

Training

To train new networks from scratch, run

python train.py --num-workers 8 configs/meta-avatar/${config}.yaml

You can train the two stage 0 models in parallel, while stage 1 model depends on stage 0 models and stage 2 model depends on stage 1 model.

You can monitor on http://localhost:6006 the training process using tensorboard:

tensorboard --logdir ${OUTPUT_DIR}/logs --port 6006

where you replace ${OUTPUT_DIR} with the respective output directory.

Evaluation

To evaluate the generated meshes, use the following script:

bash run_evaluation.sh

Again, it will conduct evaluation with default setting (subject 00122 with shortlong). You can comment/uncomment/add lines in jobs/splits to modify data splits.

License

We employ MIT License for the MetaAvatar code, which covers

extract_smpl_parameters.py
run_fine_tuning.py
train.py
configs
jobs/
depth2mesh/
preprocess/

The SIREN networks are borrowed from the official SIREN repository. Mesh extraction code is borrowed from the DeeSDF repository.

Modules not covered by our license are:

  1. Modified code from IP-Net (./evaluation);
  2. Modified code from SMPL-X (./human_body_prior); for these parts, please consult their respective licenses and cite the respective papers.
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

136 Jan 08, 2023
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Fadi Boutros 40 Dec 22, 2022
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021