뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

Overview

뉴스 도메인 질의응답 시스템

본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로 fine-tuning을 수행한 모델을 기반으로 최신 뉴스 기사를 기반으로 하여 질의응답 서비스를 제공합니다.


시스템 구성 요소

총 3가지 모듈로 구성되어 있으며 웹 클라이언트에서 질의를 입력받은 후 질문과 유사한 최신 뉴스 기사를 수집하고 이를 기반으로 기계독해를 수행하여 사용자에게 적절한 정답을 제시합니다.



웹 데모 페이지

General한 한국어 데이터셋을 기반으로 학습한 한국어 기계독해 모델에 뉴스 도메인에 적합한 추가적으로 학습한 모델을 서빙하여 실시간 질의응답 서비스를 제공한다

메인 검색 페이지

image

  • K 지정: 관련도 최상위 K개의 문서를 리턴
  • 질의 입력: 질문을 입력받음
  • 검색: 검색버튼을 누르면 로딩바 재생, 검색 -> 기계독해 수행

질의 결과

image

  • 기계독해 결과 출력: 정답이 있다고 판단한 문서에 대해서 결과출력
  • 확률값을 기준으로 소팅: 확률값이 가장 높은 결과를 맨 위에 보여줌

문서 상세 보기

image

  • 문맥 보기: 정답주변의 문맥을 볼 수 있음
  • 정답 하이라이팅: 정답을 보기 쉽게 하이라이팅함
  • 원본 뉴스기사 하이퍼링크: 기사 원문을 바로 찾아갈 수 있도록 제공

Requirements

For model serving

bentoml==0.12.1
torch==1.7.1
attrdict==2.0.1
fastprogress==1.0.0
numpy==1.19.2
transformers==4.1.1
scipy==1.5.4
scikit-learn==0.24.0
seqeval==1.2.2
sentencepiece==0.1.95
six==1.15.0

For web hosting

conda==4.9.2
Flask==1.1.2
html5lib @ file:///tmp/build/80754af9/html5lib_1593446221756/work
lxml @ file:///tmp/build/80754af9/lxml_1603216285000/work
MarkupSafe==1.1.1
requests @ file:///tmp/build/80754af9/requests_1592841827918/work
urllib3 @ file:///tmp/build/80754af9/urllib3_1603305693037/work

Model Serving with BentoML

두가지 MRC모델을 손쉽게 생성가능

  • make_single_mrc_model.py : Threshold-based MRC Model
  • make_dual_mrc_model.py : Retrospective Reader(IntensiveReadingModule, SketchReadingModule)

모델 생성

python make_dual_mrc_model.py

모델 배포

bentoml serve DualMRCModel:latest

데이터셋

  • Korquad2.0, AIHUB 기계독해 데이터셋(뉴스도메인 QAset) 사용
  • Korquad2.0은 HTML태그를 제거하고 문단단위로 전처리하여 Squad2.0형식으로 변환
  • Negative example을 포함하여 변환된 Korquad2.0 데이터 셋120만개와 AIHUB 기계독해 데이터셋 28만개를 학습시 사용
  • 약 7만개의 AIHUB 기계독해 데이터셋을 평가시 사용

모델 학습

  • 코쿼드 데이터를 3번, AIHUB 데이터를 7번 반복학습
  • 파라미터는 KoELECTRA-small-v3 모델의 configuration을 그대로 사용

모델 평가

General

  • 변환한 코쿼드의 데브셋 약 13만개를 평가 데이터로 사용
  • Soft/Hard 필터링 모델에 대한 평가 수행

Soft 필터링

  • Retrospective Reader 구조를 한국어 기계독해에 적용
  • SketchReading, IntensiveReading의 정보를 합산하여 정답을 검증
  • 가중치 변수는 추론 정보의 조합 비율을 말함
  • 아래와 같이 두 가지 모듈의 정보를 적절히 반영했을때 NoAnswer 분류 성능이 더 좋음을 알 수 있었음


Hard 필터링

  • 문단별 선별적으로 독해하는 상황을 가정함
  • SketchReading에서 정답이 없다고 판별한 경우 과감히 Skip
  • 추론 효율 향상과 정답이 없는 문단을 독해하여 발생할 수 있는 Negative bias를 줄이고자 함.
  • 하지만 필터링 비율에 따라서 성능저하 발생
  • 따라서, Positive example의 추론여부가 중요한 기계독해에선 Soft필터링 방식이 적절함을 보임 <<<<<<< HEAD

=======
![image](https://user-images.githubusercontent.com/48018483/120331699-03d07280-c329-11eb-9133-7f536130b688.png)

2317d0e137e1d25027ee78b55df4e5682a391295

Domain-Specific

  • AIHUB 기계독해 데이터셋 35만개의 일부를(20%) 평가 데이터로 사용
  • 단일 모델에 대한 평가만 수행
  • NoAnswer 분류시 사용하는 임계값을 변경하며 실험
Total
(EM)
Total
(F1)
정답이 있는 경우
(F1)
정답이 없는 경우
(acc)
KoreanNewsQAModel X X 81.84 X
KoreanNewsQAModel(th=10) 67.87 82.56 81.64 84.85
KoreanNewsQAModel(th=0) 70.58 84.92 80.53 95.89

전체적인 성능치를 고려하여 임계값을 0으로 설정하여 모델을 서빙하기로 결정

Citation

@misc{park2020koelectra,
  author = {Park, Jangwon},
  title = {KoELECTRA: Pretrained ELECTRA Model for Korean},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/monologg/KoELECTRA}}
}

Reference

Owner
TaegyeongEo
TaegyeongEo
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
Natural language computational chemistry command line interface.

nlcc Install pip install nlcc Must have Open-AI Codex key: export OPENAI_API_KEY=your key here then nlcc key bindings ctrl-w copy to clipboard (Note

Andrew White 37 Dec 14, 2022
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python)

ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python) 日本語は以下に続きます (Japanese follows) English: This book is written in Japanese and primaril

Ryuichi Yamamoto 189 Dec 29, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Kerberoast with ACL abuse capabilities

targetedKerberoast targetedKerberoast is a Python script that can, like many others (e.g. GetUserSPNs.py), print "kerberoast" hashes for user accounts

Shutdown 213 Dec 22, 2022
Script and models for clustering LAION-400m CLIP embeddings.

clustering-laion400m Script and models for clustering LAION-400m CLIP embeddings. Models were fit on the first million or so image embeddings. A subje

Peter Baylies 22 Oct 04, 2022
The official code for “DocTr: Document Image Transformer for Geometric Unwarping and Illumination Correction”, ACM MM, Oral Paper, 2021.

Good news! Our new work exhibits state-of-the-art performances on DocUNet benchmark dataset: DocScanner: Robust Document Image Rectification with Prog

Hao Feng 231 Dec 26, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Code for our paper "Transfer Learning for Sequence Generation: from Single-source to Multi-source" in ACL 2021.

TRICE: a task-agnostic transferring framework for multi-source sequence generation This is the source code of our work Transfer Learning for Sequence

THUNLP-MT 9 Jun 27, 2022
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
(ACL 2022) The source code for the paper "Towards Abstractive Grounded Summarization of Podcast Transcripts"

Towards Abstractive Grounded Summarization of Podcast Transcripts We provide the source code for the paper "Towards Abstractive Grounded Summarization

10 Jul 01, 2022
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 01, 2023