NR-GAN: Noise Robust Generative Adversarial Networks

Related tags

Deep LearningNR-GAN
Overview

NR-GAN: Noise Robust Generative Adversarial Networks (CVPR 2020)

This repository provides PyTorch implementation for noise robust GAN (NR-GAN). NR-GAN is unique in that it can learn a clean image generator even when only noisy images are available for training.

NR-GAN examples

Note: In our previous studies, we have also proposed GANs for label noise. Please check them from the links below.

Paper

Noise Robust Generative Adversarial Networks. Takuhiro Kaneko and Tatsuya Harada. In CVPR, 2020.

[Paper] [Project] [Slides] [Video]

Installation

Clone this repo:

git clone https://github.com/takuhirok/NR-GAN.git
cd NR-GAN/

First, install Python 3+. Then install PyTorch 1.3 and other dependencies by the following:

pip install -r requirements.txt

Training

To train a model, use the following script:

bash ./scripts/train.sh [dataset] [model] [output_directory_path]

Example

To train SI-NR-GAN-I (sinrgan1) on CIFAR-10 with additive Gaussian noise with a fixed standard deviation (cifar10ag25), run the following:

bash ./scripts/train.sh cifar10ag25 sinrgan1 outputs

The results are saved into outputs.

Note: In our experiments, we report the best model encountered during training to mitigate the performance fluctuation caused by GAN training instability.

Options

Regarding [dataset], choose one option among the following:

  • cifar10: No noise
  • cifar10ag25: (A) Additive Gaussian noise with a fixed standard deviation
  • cifar10ag5-50: (B) Additive Gaussian noise with a variable standard deviation
  • cifar10lg25p16: (C) Local Gaussian noise with a fixed-size patch
  • cifar10lg25p8-24: (D) Local Gaussian noise with a variable-size patch
  • cifar10u50: (E) Uniform noise
  • cifar10mix: (F) Mixture noise
  • cifar10bg25k5: (G) Brown Gaussian noise
  • cifar10abg25k5: (H) Sum of (A) and (G)
  • cifar10mg25: (I) Multiplicative Gaussian noise with a fixed standard deviation
  • cifar10mg5-50: (J) Multiplicative Gaussian noise with a variable standard deviation
  • cifar10amg5_25: (K) Sum of few (A) and (I)
  • cifar10amg25_25: (L) Sum of much (A) and (I)
  • cifar10p30: (M) Poisson noise with a fixed total number of events
  • cifar10p10-50: (N) Poisson noise with a variable total number of events
  • cifar10pg30_5: (O) Sum of (M) and few (A)
  • cifar10pg30_25: (P) Sum of (M) and much (A)

Noise examples

Regarding [model], choose one option among the following:

  • gan: GAN
  • ambientgan: AmbientGAN
  • sinrgan1: SI-NR-GAN-I
  • sinrgan2: SI-NR-GAN-II
  • sdnrgan1: SD-NR-GAN-I
  • sdnrgan2: SD-NR-GAN-II
  • sdnrgan3: SD-NR-GAN-III

Examples of generated images

CIFAR-10 with additive Gaussian noise

cifar10ag25: (A) Additive Gaussian noise with a fixed standard deviation

Examples of generated images on CIFAR-10 with additive Gaussian noise

AmbientGAN is trained with the ground-truth noise model, while the other models are trained without full knowledge of the noise (i.e., the noise distribution type and noise amount).

CIFAR-10 with multiplicative Gaussian noise

cifar10mg25: (I) Multiplicative Gaussian noise with a fixed standard deviation

Examples of generated images on CIFAR-10 with multiplicative Gaussian noise

AmbientGAN is trained with the ground-truth noise model, while the other models are trained without full knowledge of the noise (i.e., the noise distribution type, noise amount, and signal-noise relationship).

Citation

If you find this work useful for your research, please cite our paper.

@inproceedings{kaneko2020NR-GAN,
  title={Noise Robust Generative Adversarial Networks},
  author={Kaneko, Takuhiro and Harada, Tatsuya},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2020}
}

Related work

  1. A. Bora, E. Price, A. G. Dimakis. AmbientGAN: Generative Models from Lossy Measurements. In ICLR, 2018.
  2. T. Kaneko, Y. Ushiku, T. Harada. Label-Noise Robust Generative Adversarial Networks. In CVPR, 2019.
  3. T. Kaneko, Y. Ushiku, T. Harada. Class-Distinct and Class-Mutual Image Generation with GANs. In BMVC, 2019.
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
Automatically align face images 🙃→🙂. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023