i3DMM: Deep Implicit 3D Morphable Model of Human Heads

Related tags

Deep Learningi3DMM
Overview

i3DMM: Deep Implicit 3D Morphable Model of Human Heads

CVPR 2021 (Oral)

Arxiv | Poject Page

Teaser

This project is the official implementation our work, i3DMM. Much of our code is from DeepSDF's repository. We thank Park et al. for making their code publicly available.

The pretrained model is included in this repository.

Setup

  1. To get started, clone this repository into a local directory.
  2. Install Anaconda, if you don't already have it.
  3. Create a conda environment in the path with the following command:
conda create -p ./i3dmm_env
  1. Activate the conda environment from the same folder:
conda activate ./i3dmm_env
  1. Use the following commands to install required packages:
conda install pytorch=1.1 cudatoolkit=10.0 -c pytorch
pip install opencv-python trimesh[all] scikit-learn mesh-to-sdf plyfile

Preparing Data

Rigid Alignment

We assume that all the input data is rigidly aligned. Therefore, we provide reference 3D landmarks to align your test/training data. Please use centroids.txt file in the model folder to align your data to these landmarks. The landmarks in the file are in the following order:

  1. Right eye left corner
  2. Right eye right corner
  3. Left eye left corner
  4. Left eye right corner
  5. Nose tip
  6. Right lips corner
  7. Left lips corner
  8. Point on the chin The following image shows these landmarks. The centroids.txt file consists of 3D landmarks with coordinates x, y, z. Each file consists of 8 lines. Each line consists of the 3 values in 'x y z' order corresponding to the landmarks described above separated by a space.

Please see our paper for more information on rigid alignment.

Dataset

We closely follow ShapeNet Dataset's folder structure. Please see the a mesh folder in the dataset for an example. The dataset is assumed to be as follows:


   
    /
    
     /
     
      /models/
      
       .obj

       
        /
        
         /
         
          /models/
          
           .mtl 
           
            /
            
             /
             
              /models/
              
               .jpg 
               
                /
                
                 /
                 
                  /models/centroids.txt 
                  
                   /
                   
                    /
                    
                     /models/centroidsEars.txt 
                    
                   
                  
                 
                
               
              
             
            
           
          
         
        
       
      
     
    
   

The model name should be in a specific structure, xxxxx_eyy where xxxxx are 5 characters which identify an identity and yy are unique numbers to specify different expressions and hairstyles. We follow e01 - e10 for different expressions where e07 is neutral expression. e11-e13 are hairstyles in neutral expression. Rest of the expression identifiers are for test expressions.

The centroids.txt file contains landmarks as described in the alignment step. Additionally, to train the model, one could also have centroidEars.txt file which has the 3D ear landmarks in the following order:

  1. Left ear top
  2. Left ear left
  3. Left ear bottom
  4. Left ear right
  5. Right ear top
  6. Right ear left
  7. Right ear bottom
  8. Right ear right These 8 landmarks are as shown in the following image. The file is organized similar to centroids.txt. Please see the a mesh folder in the dataset for an example.

Once the dataset is prepared, create the splits as shown in model/headModel/splits/*.json files. These files are similar to the splits files in DeepSDF.

Preprocessing

The following commands preprocesses the meshes from the dataset described above and places them in data folder. The command must be run from "model" folder. To preprocess training data:

python preprocessData.py --samples_directory ./data --input_meshes_directory 
   
      -e headModel -s Train

   

To preprocess test data:

python preprocessData.py --samples_directory ./data --input_meshes_directory 
   
     -e headModel -s Test

   

'headModel' is the folder containing network settings for the 'specs.json'. The json file also contains split file and preprocessed data paths. The splits files are in model/headModel/splits/*.json These files indicate files that are for testing, training, and reference shape initialisation.

Training the Model

Once data is preprocessed, one can train the model with the following command.

python train_i3DMM.py -e headModel

When working with a large dataset, please consider using batch_split option with a power of 2 (2, 4, 8, 16 etc.). The following command is an example.

python train_i3DMM.py -e headModel --batch_split 2

Additionally, if one considers using landmark supervision or ears constraints for long hair (see paper for details), please export the centroids and ear centroids as a dictionaries with npy files (8 face landmarks: eightCentroids.npy, ear landmarks: gtEarCentroids.npy).

An example entry in the dictionary: {"xxxxx_eyy: 8x3 numpy array"}

Fitting i3DMM to Preprocessed Data

Please see the preprocessing section for preparing the data. Once the data is ready, please use the following command to fit i3DMM to the data.

To save as image:

python fit_i3DMM_to_mesh.py -e headModel -c latest -d data -s 
   
     --imNM True

   

To save as a mesh:

python fit_i3DMM_to_mesh.py -e headModel -c latest -d data -s 
   
     --imNM False

   

Test dataset can be downloaded with this link. Please extract and move the 'heads' folder to dataset folder.

Citation

Please cite our paper if you use any part of this repository.

@inproceedings {yenamandra2020i3dmm,
 author = {T Yenamandra and A Tewari and F Bernard and HP Seidel and M Elgharib and D Cremers and C Theobalt},
 title = {i3DMM: Deep Implicit 3D Morphable Model of Human Heads},
 booktitle = {Proceedings of the IEEE / CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
 month = {June},
 year = {2021}
}
Owner
Tarun Yenamandra
Tarun Yenamandra
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023