Data Orchestration Platform

Related tags

Miscellaneousdop
Overview

Table of contents

What is DOP

Design Concept

DOP is designed to simplify the orchestration effort across many connected components using a configuration file without the need to write any code. We have a vision to make orchestration easier to manage and more accessible to a wider group of people.

Here are some of the key design concept behind DOP,

  • Built on top of Apache Airflow - Utilises it’s DAG capabilities with interactive GUI
  • DAGs without code - YAML + SQL
  • Native capabilities (SQL) - Materialisation, Assertion and Invocation
  • Extensible via plugins - DBT job, Spark job, Egress job, Triggers, etc
  • Easy to setup and deploy - fully automated dev environment and easy to deploy
  • Open Source - open sourced under the MIT license

Please note that this project is heavily optimised to run with GCP (Google Cloud Platform) services which is our current focus. By focusing on one cloud provider, it allows us to really improve on end user experience through automation

A Typical DOP Orchestration Flow

Typical DOP Flow

Prerequisites - Run in Docker

Note that all the IAM related prerequisites will be available as a Terraform template soon!

For DOP Native Features

  1. Download and install Docker https://docs.docker.com/get-docker/ (if you are on Windows, please follow instruction here as there are some additional steps required for it to work https://docs.docker.com/docker-for-windows/install/)
  2. Download and install Google Cloud Platform (GCP) SDK following instructions here https://cloud.google.com/sdk/docs/install.
  3. Create a dedicated service account for docker with limited permissions for the development GCP project, the Docker instance is not designed to be connected to the production environment
    1. Call it dop-docker-user@<your GCP project id> and create it in https://console.cloud.google.com/iam-admin/serviceaccounts?project=<your GCP project id>
    2. Assign the roles/bigquery.dataEditor and roles/bigquery.jobUser role to the service account under https://console.cloud.google.com/iam-admin/iam?project=<your GCP project id>
  4. Your GCP user / group will need to be given the roles/iam.serviceAccountUser and the roles/iam.serviceAccountTokenCreator role on thedevelopment project just for the dop-docker-user service account in order to enable Service Account Impersonation.
    Grant service account user
  5. Authenticating with your GCP environment by typing in gcloud auth application-default login in your terminal and following instructions. Make sure you proceed to the stage where application_default_credentials.json is created on your machine (For windows users, make a note of the path, this will be required on a later stage)
  6. Clone this repository to your machine.

For DBT

  1. Setup a service account for your GCP project called dop-dbt-user in https://console.cloud.google.com/iam-admin/serviceaccounts?project=<your GCP project id>
  2. Assign the roles/bigquery.dataEditor and roles/bigquery.jobUser role to the service account at project level under https://console.cloud.google.com/iam-admin/iam?project=<your GCP project id>
  3. Your GCP user / group will need to be given the roles/iam.serviceAccountUser and the roles/iam.serviceAccountTokenCreator role on the development project just for the dop-dbt-user service account in order to enable Service Account Impersonation.

Instructions for Setting things up

Run Airflow with DOP in Docker - Mac

See README in the service project setup and follow instructions.

Once it's setup, you should see example DOP DAGs such as dop__example_covid19 Airflow in Docker

Run Airflow with DOP in Docker - Windows

This is currently working in progress, however the instructions on what needs to be done is in the Makefile

Run on Composer

Prerequisites

  1. Create a dedicate service account for Composer and call it dop-composer-user with following roles at project level
    • roles/bigquery.dataEditor
    • roles/bigquery.jobUser
    • roles/composer.worker
    • roles/compute.viewer
  2. Create a dedicated service account for DBT with limited permissions.
    1. [Already done in here if it’s DEV] Call it dop-dbt-user@<GCP project id> and create in https://console.cloud.google.com/iam-admin/serviceaccounts?project=<your GCP project id>
    2. [Already done in here if it’s DEV] Assign the roles/bigquery.dataEditor and roles/bigquery.jobUser role to the service account at project level under https://console.cloud.google.com/iam-admin/iam?project=<your GCP project id>
    3. The dop-composer-user will need to be given the roles/iam.serviceAccountUser and the roles/iam.serviceAccountTokenCreator role just for the dop-dbt-user service account in order to enable Service Account Impersonation.

Create Composer Cluster

  1. Use the service account already created dop-composer-user instead of the default service account
  2. Use the following environment variables
    DOP_PROJECT_ID : {REPLACE WITH THE GCP PROJECT ID WHERE DOP WILL PERSIST ALL DATA TO}
    DOP_LOCATION : {REPLACE WITH GCP REGION LOCATION WHRE DOP WILL PERSIST ALL DATA TO}
    DOP_SERVICE_PROJECT_PATH := {REPLACE WITH THE ABSOLUTE PATH OF THE Service Project, i.e. /home/airflow/gcs/dags/dop_{service project name}
    DOP_INFRA_PROJECT_ID := {REPLACE WITH THE GCP INFRASTRUCTURE PROJECT ID WHERE BUILD ARTIFACTS ARE STORED, i.e. a DBT docker image stored in GCR}
    
    and optionally
    DOP_GCR_PULL_SECRET_NAME:= {This maybe needed if the project storing the gcr images are not he same as where Cloud Composer runs, however this might be a better alternative https://medium.com/google-cloud/using-single-docker-repository-with-multiple-gke-projects-1672689f780c}
    
  3. Add the following Python Packages
    dataclasses==0.7
    
  4. Finally create a new node pool with the following k8 label
    key: cloud.google.com/gke-nodepool
    value: kubernetes-task-pool
    

Deployment

See Service Project README

Misc

Service Account Impersonation

Impersonation is a GCP feature allows a user / service account to impersonate as another service account.
This is a very useful feature and offers the following benefits

  • When doing development locally, especially with automation involved (i.e using Docker), it is very risky to interact with GCP services by using your user account directly because it may have a lot of permissions. By impersonate as another service account with less permissions, it is a lot safer (least privilege)
  • There is no credential needs to be downloaded, all permissions are linked to the user account. If an employee leaves the company, access to GCP will be revoked immediately because the impersonation process is no longer possible

The following diagram explains how we use Impersonation in DOP when it runs in Docker DOP Docker Account Impersonation

And when running DBT jobs on production, we are also using this technique to use the composer service account to impersonate as the dop-dbt-user service account so that service account keys are not required.

There are two very google articles explaining how impersonation works and why using it

You might also like...
Cross-platform config and manager for click console utilities.

climan Help the project financially: Donate: https://smartlegion.github.io/donate/ Yandex Money: https://yoomoney.ru/to/4100115206129186 PayPal: https

YourCity is a platform to match people to their prefect city.
YourCity is a platform to match people to their prefect city.

YourCity YourCity is a city matching App that matches users to their ideal city. It is a fullstack React App made with a Redux state manager and a bac

A multi-platform fuzzer for poking at userland binaries and servers

litefuzz A multi-platform fuzzer for poking at userland binaries and servers litefuzz intro why how it works what it does what it doesn't do support p

A platform for developers 👩‍💻  who wants to share their programs and projects.
A platform for developers 👩‍💻 who wants to share their programs and projects.

Fest-Practice-2021 This project is excluded from Hacktoberfest 2021. Please use this as a testing repo/project. A platform for developers 👩‍💻 who wa

Speed up your typing by some exercises in the multi-platform(Windows/Ubuntu).

Introduction This project purpose is speed up your typing by some exercises in the multi-platform(Windows/Ubuntu). Build Environment Software Environm

An Airdrop alternative for cross-platform users only for desktop with Python

PyDrop An Airdrop alternative for cross-platform users only for desktop with Python, -version 1.0 with less effort, just as a practice. ##############

Platform Tree for Xiaomi Redmi Note 7/7S (lavender)
Platform Tree for Xiaomi Redmi Note 7/7S (lavender)

The Xiaomi Redmi Note 7 (codenamed "lavender") is a mid-range smartphone from Xiaomi announced in January 2019. Device specifications Device Xiaomi Re

A Classroom Engagement Platform

Project Introduction This is project introduction Setup Setting up Postgres This is the most tricky part when setting up the application. You will nee

Traffic flow test platform, especially for reinforcement learning
Traffic flow test platform, especially for reinforcement learning

Traffic Flow Test Platform Traffic flow test platform, especially for reinforcement learning, named TFTP. A traffic signal control framework that can

Comments
  • Release DOP v0.3.0

    Release DOP v0.3.0

    A number of new features where added in this version

    DOP v0.3.0 — 2021-08-11

    Features

    • Support for "generic" airflow operators: you can now use regular python operators as part of your config files.

    • Support for “dbt docs” command to generate documentation for all dbt tasks: Users can now add “docs generate” as a target in their DOP configuration and additionally specify a GCS bucket with the --bucket and --bucket-path options where documents are copied to.

    • Serve dbt docs: Documents generated by dbt can be served as a web page by deploying the provided app on GAE. Note that deploying is an additional step that needs to be carried out after docs have been generated. See infrastructure/dbt-docs/README.md for details.

    • dbt tasks artifacts run_results created by dbt tasks saved to BigQuery: This json file contains information on completed dbt invocations and is saved in the BQ table “run_results” for analysis and debugging.

    • Add support for Airflow v1.10.14 and v1.10.15 local environments: Users can specify which version they want to use by setting the AIRFLOW_VERSION environment variable.

    • Pre-commit linters: added pre-commit hooks to ensure python, yaml and some support for plain text file consistency in formatting and style throughout DOP codebase.

    Changes

    • Ensure DAGs using the same DBT project do not run concurrently: Safety feature to safely allow selective execution of workflows by calling specific commands or tags (e.g. dbt run --m) within a single dbt project. This avoids creating inter-dependant workflows to avoid overriding each other's artifacts, since they will share the same target location (within the dbt container).

    • Test time-partitioning: Time-partitioning of datetime type properly validated as part of schema validation.

    • Use Python 3.7 and dbt 0.19.1 in Composer K8s Operator

    • Add Dataflow example task: with the introduction of "regular" in the yaml config Airflow Operators, it is now possible to run compute intensive Dataflow jobs. Check example_dataflow_template for an example on how to implement a Dataflow pipeline.

    opened by dinigo 0
Releases(v0.3.0)
  • v0.3.0(Aug 17, 2021)

    Features

    • Support for "generic" airflow operators: you can now use regular python operators as part of your config files.

    • Support for “dbt docs” command to generate documentation for all dbt tasks: Users can now add “docs generate” as a target in their DOP configuration and additionally specify a GCS bucket with the --bucket and --bucket-path options where documents are copied to.

    • Serve dbt docs: Documents generated by dbt can be served as a web page by deploying the provided app on GAE. Note that deploying is an additional step that needs to be carried out after docs have been generated. See infrastructure/dbt-docs/README.md for details.

    • dbt tasks artifacts run_results created by dbt tasks saved to BigQuery: This json file contains information on completed dbt invocations and is saved in the BQ table “run_results” for analysis and debugging.

    • Add support for Airflow v1.10.14 and v1.10.15 local environments: Users can specify which version they want to use by setting the AIRFLOW_VERSION environment variable.

    • Pre-commit linters: added pre-commit hooks to ensure python, yaml and some support for plain text file consistency in formatting and style throughout DOP codebase.

    Changes

    • Ensure DAGs using the same DBT project do not run concurrently: Safety feature to safely allow selective execution of workflows by calling specific commands or tags (e.g. dbt run --m) within a single dbt project. This avoids creating inter-dependant workflows to avoid overriding each other's artifacts, since they will share the same target location (within the dbt container).

    • Test time-partitioning: Time-partitioning of datetime type properly validated as part of schema validation.

    • Use Python 3.7 and dbt 0.19.1 in Composer K8s Operator

    • Add Dataflow example task: with the introduction of "regular" in the yaml config Airflow Operators, it is now possible to run compute intensive Dataflow jobs. Check example_dataflow_template for an example on how to implement a Dataflow pipeline.

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Mar 30, 2021)

Owner
Datatonic
We accelerate business impact through Machine Learning and Analytics
Datatonic
This repository requires you to solve a problem by writing some basic python code.

Can You Solve a Problem? A beginner friendly repository that requires you to solve familiar problems with python. This could be as simple as implement

Precious Kolawole 11 Nov 30, 2022
Anki for desktop computers

Anki This repo contains the source code for the computer version of Anki. If you'd like to try development builds of Anki but don't feel comfortable b

Ankitects 12.9k Jan 09, 2023
Run Windows Applications on Linux as if they are native, Use linux applications to launch files files located in windows vm without needing to install applications on vm. With easy to use configuration GUI

Run Windows Applications on Linux as if they are native, Use linux applications to launch files files located in windows vm without needing to install applications on vm. With easy to use configurati

Casu Al Snek 2k Jan 02, 2023
A Python library to simulate a Zoom H6 recorder remote control

H6 A Python library to emulate a Zoom H6 recorder remote control Introduction This library allows you to control your Zoom H6 recorder from your compu

Matias Godoy 68 Nov 02, 2022
Sardana integration into the Jupyter ecosystem.

sardana-jupyter Sardana integration into the Jupyter ecosystem.

Marc Espín 1 Dec 23, 2021
Repo created for the purpose of adding any kind of programs and projects

Programs and Project Repository A repository for adding programs and projects of any kind starting from beginners level to expert ones Contributing to

Unicorn Dev Community 3 Nov 02, 2022
Inverted-pendulum-with-fuzzy-control - Inverted pendulum with fuzzy control

Fuzzy Inverted Pendulum Basically, this project consists of an inverted pendulum

Mahan Ahmadvand 1 Aug 25, 2022
Now you'll never be late for your Webinars or Meetings on the GoToWebinar Platform

GoToWebinar Launcher : Now you'll never be late for your Webinars or Meetings on the GoToWebinar Platform About Are you popular for always being late

Jay Thorat 6 Jun 07, 2022
TriOTP, the OTP framework for Python Trio

TriOTP, the OTP framework for Python Trio See documentation for more informations. Introduction This project is a simplified implementation of the Erl

David Delassus 7 Nov 21, 2022
Yakuake session management

yman is a python script used for saving/restoring yakuake sessions (currently running commands, working directories, environment variables, tab titles)

Szymon Borecki 6 Jun 25, 2022
A simple and efficient computing package for Genshin Impact gacha analysis

GGanalysisLite计算包 这个版本的计算包追求计算速度,而GGanalysis包有着更多计算功能。 GGanalysisLite包通过卷积计算分布列,通过FFT和快速幂加速卷积计算。 测试玩家得到的排名值rank的数学意义是:与抽了同样数量五星的其他玩家相比,测试玩家花费的抽数大于等于比例

一棵平衡树 34 Nov 26, 2022
📜Generate poetry with gcc diagnostics

gado (gcc awesome diagnostics orchestrator) is a wrapper of gcc that outputs its errors and warnings in a more poetic format.

Dikson Santos 19 Jun 25, 2022
KiCad bus length matching script.

KiBus length matching script This script implements way to monitor multiple nets, combined into a bus that needs to be length matched

Piotr Esden-Tempski 22 Mar 17, 2022
Better Giveaways is a bot that will change the experience of using a giveaway bot forever.

Better-Giveaways Better Giveaways is a bot that will change the experience of using a giveaway bot forever. VoxelBotUtils/Novus, latest PyPi releases

Lightning 2 Jan 12, 2022
Test to grab m3u from YouTube live.

YouTube_to_m3u https://raw.githubusercontent.com/benmoose39/YouTube_to_m3u/main/youtube.m3u Updated m3u links of YouTube live channels, auto-updated e

136 Jan 06, 2023
Automated, progress quest-inspired procedural adventuring

Tales of an Endless Journey (TEJ) Automated, progress quest-inspired procedural adventuring What is this project? Journey is the result of many, many

8 Dec 14, 2021
Penelope Shell Handler

penelope Penelope is an advanced shell handler. Its main aim is to replace netcat as shell catcher during exploiting RCE vulnerabilities. It works on

293 Dec 30, 2022
This is a Blender 2.9 script for importing mixamo Models to Godot-3

Mixamo-To-Godot This is a Blender 2.9 script for importing mixamo Models to Godot-3 The script does the following things Imports the mixamo models fro

8 Sep 02, 2022
Write a program that works out whether if a given year is a leap year

Leap Year 💪 This is a Difficult Challenge 💪 Instructions Write a program that works out whether if a given year is a leap year. A normal year has 36

Rodrigo Santos 0 Jun 22, 2022
Домашние задания, выполненные на 3ем семестре РТУ МИРЭА, по дисциплине

ДЗ по курсу "Конфигурационное управление" в РТУ МИРЭА Описание В данном репозитории находятся домашние задания, выполненные на 3ем семестре РТУ МИРЭА,

Semyon Esaev 4 Dec 22, 2022