PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

Related tags

Deep Learningpika
Overview

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi. The first release focuses on end-to-end speech recognition. We use Pytorch as deep learning engine, Kaldi for data formatting and feature extraction.

Key Features

  • On-the-fly data augmentation and feature extraction loader

  • TDNN Transformer encoder and convolution and transformer based decoder model structure

  • RNNT training and batch decoding

  • RNNT decoding with external Ngram FSTs (on-the-fly rescoring, aka, shallow fusion)

  • RNNT Minimum Bayes Risk (MBR) training

  • LAS forward and backward rescorer for RNNT

  • Efficient BMUF (Block model update filtering) based distributed training

Installation and Dependencies

In general, we recommend Anaconda since it comes with most dependencies. Other major dependencies include,

Pytorch

Please go to https://pytorch.org/ for pytorch installation, codes and scripts should be able to run against pytorch 0.4.0 and above. But we recommend 1.0.0 above for compatibility with RNNT loss module (see below)

Pykaldi and Kaldi

We use Kaldi (https://github.com/kaldi-asr/kaldi)) and PyKaldi (a python wrapper for Kaldi) for data processing, feature extraction and FST manipulations. Please go to Pykaldi website https://github.com/pykaldi/pykaldi for installation and make sure to build Pykaldi with ninja for efficiency. After following the installation process of pykaldi, you should have both Kaldi and Pykaldi dependencies ready.

CUDA-Warp RNN-Transducer

For RNNT loss module, we adopt the pytorch binding at https://github.com/1ytic/warp-rnnt

Others

Check requirements.txt for other dependencies.

Get Started

To get started, check all the training and decoding scripts located in egs directory.

I. Data preparation and RNNT training

egs/train_transducer_bmuf_otfaug.sh contains data preparation and RNNT training. One need to prepare training data and specify the training data directory,

#training data dir must contain wav.scp and label.txt files
#wav.scp: standard kaldi wav.scp file, see https://kaldi-asr.org/doc/data_prep.html 
#label.txt: label text file, the format is, uttid sequence-of-integer, where integer
#           is one-based indexing mapped label, note that zero is reserved for blank,  
#           ,eg., utt_id_1 3 5 7 10 23 
train_data_dir=

II. Continue with MBR training

With RNNT trained model, one can continued MBR training with egs/train_transducer_mbr_bmuf_otfaug.sh (assuming using the same training data, therefore data preparation is omitted). Make sure to specify the initial model,

--verbose \
--optim sgd \
--init_model $exp_dir/init.model \
--rnnt_scale 1.0 \
--sm_scale 0.8 \

III. Training LAS forward and backward rescorer

One can train a forward and backward LAS rescorer for your RNN-T model using egs/train_las_rescorer_bmuf_otfaug.sh. The LAS rescorer will share the encoder part with RNNT model, and has extra two-layer LSTM as additional encoder, make sure to specify the encoder sharing as,

--num_batches_per_epoch 526264 \
--shared_encoder_model $exp_dir/final.model \
--num_epochs 5 \

We support bi-directional LAS rescoring, i.e., forward and backward rescoring. Backward (right-to-left) rescoring is achieved by reversing sequential labels when conducting LAS model training. One can easily perform a backward LAS rescorer training by specifying,

--reverse_labels

IV. Decoding

egs/eval_transducer.sh is the main evluation script, which contains the decoding pipeline. Forward and backward LAS rescoring can be enabled by specifying these two models,

##########configs#############
#rnn transducer model
rnnt_model=
#forward and backward las rescorer model
lasrescorer_fw=
lasrescorer_bw=

Caveats

All the training and decoding hyper-parameters are adopted based on large-scale (e.g., 60khrs) training and internal evaluation data. One might need to re-tune hyper-parameters to acheive optimal performances. Also the WER (CER) scoring script is based on a Mandarin task, we recommend those who work on different languages rewrite scoring scripts.

References

[1] Improving Attention Based Sequence-to-Sequence Models for End-to-End English Conversational Speech Recognition, Chao Weng, Jia Cui, Guangsen Wang, Jun Wang, Chengzhu Yu, Dan Su, Dong Yu, InterSpeech 2018

[2] Minimum Bayes Risk Training of RNN-Transducer for End-to-End Speech Recognition, Chao Weng, Chengzhu Yu, Jia Cui, Chunlei Zhang, Dong Yu, InterSpeech 2020

Citations

@inproceedings{Weng2020,
  author={Chao Weng and Chengzhu Yu and Jia Cui and Chunlei Zhang and Dong Yu},
  title={{Minimum Bayes Risk Training of RNN-Transducer for End-to-End Speech Recognition}},
  year=2020,
  booktitle={Proc. Interspeech 2020},
  pages={966--970},
  doi={10.21437/Interspeech.2020-1221},
  url={http://dx.doi.org/10.21437/Interspeech.2020-1221}
}

@inproceedings{Weng2018,
  author={Chao Weng and Jia Cui and Guangsen Wang and Jun Wang and Chengzhu Yu and Dan Su and Dong Yu},
  title={Improving Attention Based Sequence-to-Sequence Models for End-to-End English Conversational Speech Recognition},
  year=2018,
  booktitle={Proc. Interspeech 2018},
  pages={761--765},
  doi={10.21437/Interspeech.2018-1030},
  url={http://dx.doi.org/10.21437/Interspeech.2018-1030}
}

Disclaimer

This is not an officially supported Tencent product

Owner
Research repositories.
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
Machine Learning University: Accelerated Computer Vision Class

Machine Learning University: Accelerated Computer Vision Class This repository contains slides, notebooks, and datasets for the Machine Learning Unive

AWS Samples 1.3k Dec 28, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023