Tensor-Based Quantum Machine Learning

Overview
https://codecov.io/gh/tensorly/quantum/branch/main/graph/badge.svg?token=5P8GZ8YLO7

TensorLy_Quantum

TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch.

With TensorLy-Quantum, you can easily:

  • Create large quantum circuit: Tensor network formalism requires up to exponentially less memory for quantum simulation than traditional vector and matrix approaches.
  • Leverage tensor methods: the state vectors are efficiently represented in factorized form as Tensor-Rings (MPS) and the operators as TT-Matrices (MPO)
  • Efficient simulation: tensorly-quantum leverages the factorized structure to efficiently perform quantum simulation without ever forming the full, dense operators and state-vectors
  • Multi-Basis Encoding: we provide multi-basis encoding out-of-the-box for scalable experimentation
  • Solve hard problems: we provide all the tools to solve the MaxCut problem for an unprecendented number of qubits / vertices

Installing TensorLy-Quantum

Through pip

pip install tensorly-quantum

From source

git clone https://github.com/tensorly/quantum
cd quantum
pip install -e .
Comments
  • Rz has no gradient issue resolved

    Rz has no gradient issue resolved

    Hey there, The way RotZ was implemented it didn't have any gradient. I fixed the issue by using the same template as for the RotY and RotX. I think the tl.tensor() in the original version somehow blocked the backprop. The way it is written now the gradient is correct.

    opened by PatrickHuembeli 3
  • calculate_cut in the VQE example?

    calculate_cut in the VQE example?

    Hello! I have been trying to use your code to compute the MaxCut in the VQE jupyter notebook provided in the example sections. I tried to apply the calculate_cut function on the state as tlq.calculate_cut(state, qubits1, qubits2, weights) but I am having the following error TypeError: only integer tensors of a single element can be converted to an index.

    I see that the cut is calculated differently in the MBE example, but I would like to know if there is an analogue way of doing it with the VQE. Or should I just adapt my Hamiltonian to maximize the cut? Any help is appreciated, Thanks!

    opened by marionsilv 2
  • How to use cuQuantum as a backend

    How to use cuQuantum as a backend

    Hi,

    Thank you for your great work! May I know how to use cuQuantum as a backend as mentioned in your paper? Could you please provide a code example? How does the cuQuantum backend support autograd? Thank you very much!

    opened by nadbp 1
  • CNOT gate issue

    CNOT gate issue

    Hello,

    I have been trying to build a circuit with a CNOT gate acting on non-contiguous qubits (e.g., qubit 1 and 4), but I am finding strange results.

    For example, if I choose an initial state [1,0,0,0]

    and apply the unitary uni = tlq.Unitary([tlq.CNOTL(device=device, dtype=dtype), tlq.CNOTR(device=device, dtype=dtype), tlq.IDENTITY(dtype=dtype, device=device), tlq.IDENTITY(dtype=dtype, device=device)], nqubits, ncontraq, device=device, dtype=dtype)

    I get (for the expected value of Sz): tensor([-1., -1., 1., 1.])

    However, if I apply the CNOT cores to non-adjacent qubits in the same initial state, with uni = tlq.Unitary([tlq.CNOTL(device=device, dtype=dtype), tlq.IDENTITY(dtype=dtype, device=device), tlq.IDENTITY(dtype=dtype, device=device), tlq.CNOTR(device=device, dtype=dtype)], nqubits, ncontraq, device=device, dtype=dtype)

    I find, again for the expected value of Sz: tensor([-2., 2., 2., 0.])

    Is there any limitation regarding the CNOT cores that make it only valid for adjacent qubits, or am I doing something wrong? I am attaching a file with the full code for running: code.txt

    Thanks for the help, Marion Silvestrini.

    opened by marionsilv 2
  • Hamiltonian unitary

    Hamiltonian unitary

    Hello all,

    I was wondering if there is a way in TensorLy Quantum to build a parametrised unitary based on a binary Hamiltonian, such as the Ising model given in the examples, for use in the circuits.

    I mean to use it in an application like a QAOA, for instance. Is there a way to adapt from the binary_hamiltonian function, or something like that?

    Thanks!

    opened by rafaeleb 10
Releases(0.1.0)
Owner
TensorLy
Tensor Learning in Python.
TensorLy
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021