Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Overview

Tevatron

Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized design for easy research; a set of command line tools are also provided for fast development and testing. A set of easy-to-use interfaces to Huggingfac's state-of-the-art pre-trained transformers ensures Tevatron's superior performance.

Tevatron is currently under initial development stage. We will be actively adding new features and API changes may happen. Suggestions, feature requests and PRs are welcomed.

Features

  • Command line interface for dense retriever training/encoding and dense index search.
  • Flexible and extendable Pytorch retriever models.
  • Highly efficient Trainer, a subclass of Huggingface Trainer, that naively support training performance features like mixed precision and distributed data parallel.
  • Fast and memory-efficient train/inference data access based on memory mapping with Apache Arrow through Huggingface datasets.

Installation

First install neural network and similarity search backends, namely Pytorch and FAISS. Check out the official installation guides for Pytorch and for FAISS.

Then install Tevatron with pip,

pip install tevatron

Or typically for develoment/research, clone this repo and install as editable,

git https://github.com/texttron/tevatron
cd tevatron
pip install --editable .

Note: The current code base has been tested with, torch==1.8.2, faiss-cpu==1.7.1, transformers==4.9.2, datasets==1.11.0

Data Format

Training: Each line of the the Train file is a training instance,

{'query': TEXT_TYPE, 'positives': List[TEXT_TYPE], 'negatives': List[TEXT_TYPE]}
...

Inference/Encoding: Each line of the the encoding file is a piece of text to be encoded,

{text_id: "xxx", 'text': TEXT_TYPE}
...

Here TEXT_TYPE can be either raw string or pre-tokenized ids, i.e. List[int]. Using the latter can help lower data processing latency during training to reduce/eliminate GPU wait. Note: the current code requires text_id of passages/contexts to be convertible to integer, e.g. integers or string of integers.

Training (Simple)

To train a simple dense retriever, call the tevatron.driver.train module,

python -m tevatron.driver.train \  
  --output_dir $OUTDIR \  
  --model_name_or_path bert-base-uncased \  
  --do_train \  
  --save_steps 20000 \  
  --train_dir $TRAIN_DIR \
  --fp16 \  
  --per_device_train_batch_size 8 \  
  --learning_rate 5e-6 \  
  --num_train_epochs 2 \  
  --dataloader_num_workers 2

Here we picked bert-base-uncased BERT weight from Huggingface Hub and turned on AMP with --fp16 to speed up training. Several command flags are provided in addition to configure the learned model, e.g. --add_pooler which adds an linear projection. A full list command line arguments can be found in tevatron.arguments.

Training (Research)

Check out the run.py in examples directory for a fully configurable train/test loop. Typically you will do,

from tevatron.modeling import DenseModel
from tevatron.trainer import DenseTrainer as Trainer

...
model = DenseModel.build(
        model_args,
        data_args,
        training_args,
        config=config,
        cache_dir=model_args.cache_dir,
    )
trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        data_collator=collator,
    )
...
trainer.train()

Encoding

To encode, call the tevatron.driver.encode module. For large corpus, split the corpus into shards to parallelize.

for s in shard1 shar2 shard3
do
python -m tevatron.driver.encode \  
  --output_dir=$OUTDIR \  
  --tokenizer_name $TOK \  
  --config_name $CONFIG \  
  --model_name_or_path $MODEL_DIR \  
  --fp16 \  
  --per_device_eval_batch_size 128 \  
  --encode_in_path $CORPUS_DIR/$s.json \  
  --encoded_save_path $ENCODE_DIR/$s.pt
done

Index Search

Call the tevatron.faiss_retriever module,

python -m tevatron.faiss_retriever \  
--query_reps $ENCODE_QRY_DIR/qry.pt \  
--passage_reps $ENCODE_DIR/'*.pt' \  
--depth $DEPTH \
--batch_size -1 \
--save_text \
--save_ranking_to rank.tsv

Encoded corpus or corpus shards are loaded based on glob pattern matching of argument --passage_reps. Argument --batch_size controls number of queries passed to the FAISS index each search call and -1 will pass all queries in one call. Larger batches typically run faster (due to better memory access patterns and hardware utilization.) Setting flag --save_text will save the ranking to a tsv file with each line being qid pid score.

Alternatively paralleize search over the shards,

for s in shard1 shar2 shard3
do
python -m tevatron.faiss_retriever \  
--query_reps $ENCODE_QRY_DIR/qry.pt \  
--passage_reps $ENCODE_DIR/$s.pt \  
--depth $DEPTH \  
--save_ranking_to $INTERMEDIATE_DIR/$s
done

Then combine the results using the reducer module,

python -m tevatron.faiss_retriever.reducer \  
--score_dir $INTERMEDIATE_DIR \  
--query $ENCODE_QRY_DIR/qry.pt \  
--save_ranking_to rank.txt  

Contacts

If you have a toolkit specific question, feel free to open an issue.

You can also reach out to us for general comments/suggestions/questions through email.

Owner
texttron
texttron
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
A Flask Sentiment Analysis API, with visual implementation

The Sentiment Analysis Api was created using python flask module,it allows users to parse a text or sentence throught the (?text) arguement, then view the sentiment analysis of that sentence. It can

Ifechukwudeni Oweh 10 Jul 17, 2022
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.

(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i

5.6k Jan 03, 2023
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini!

About CappuccinoJs This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini! Este conversor criar

Arthur Ottoni Ribeiro 48 Nov 15, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
PyWorld3 is a Python implementation of the World3 model

The World3 model revisited in Python Install & Hello World3 How to tune your own simulation Licence How to cite PyWorld3 with Bibtex References & ackn

Charles Vanwynsberghe 248 Dec 14, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

LineFlow: Framework-Agnostic NLP Data Loader in Python LineFlow is a simple text dataset loader for NLP deep learning tasks. LineFlow was designed to

TofuNLP 177 Jan 04, 2023
NLP-based analysis of poor Chinese movie reviews on Douban

douban_embedding 豆瓣中文影评差评分析 1. NLP NLP(Natural Language Processing)是指自然语言处理,他的目的是让计算机可以听懂人话。 下面是我将2万条豆瓣影评训练之后,随意输入一段新影评交给神经网络,最终AI推断出的结果。 "很好,演技不错

3 Apr 15, 2022
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
Code for papers "Generation-Augmented Retrieval for Open-Domain Question Answering" and "Reader-Guided Passage Reranking for Open-Domain Question Answering", ACL 2021

This repo provides the code of the following papers: (GAR) "Generation-Augmented Retrieval for Open-domain Question Answering", ACL 2021 (RIDER) "Read

morning 49 Dec 26, 2022
CoSENT、STS、SentenceBERT

CoSENT_Pytorch 比Sentence-BERT更有效的句向量方案

102 Dec 07, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022