The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Overview

Autoregressive Image Generation using Residual Quantization (CVPR 2022)

The official implementation of "Autoregressive Image Generation using Residual Quantization"
Doyup Lee*, Chiheon Kim*, Saehoon Kim, Minsu Cho, Wook-Shin Han (* Equal contribution)
CVPR 2022

The examples of generated images by RQ-Transformer using class conditions and text conditions.
Note that the text conditions of the examples are not used in training time.

TL;DR For autoregressive (AR) modeling of high-resolution images, we propose the two-stage framework, which consists of RQ-VAE and RQ-Transformer. Our framework can precisely approximate a feature map of an image and represent an image as a stack of discrete codes to effectively generate high-quality images.

Requirements

We have tested our codes on the environment below

  • Python 3.7.10 / Pytorch 1.9.0 / torchvision 0.10.0 / CUDA 11.1 / Ubuntu 18.04 .

Please run the following command to install the necessary dependencies

pip install -r requirements.txt

Coverage of Released Codes

  • Implementation of RQ-VAE and RQ-Transformer
  • Pretrained checkpoints of RQ-VAEs and RQ-Transformers
  • Training and evaluation pipelines of RQ-VAE
  • Image generation and its evaluation pipeline of RQ-Transformer
  • Jupyter notebook for text-to-image generation of RQ-Transformer

Pretrained Checkpoints

Checkpoints Used in the Original Paper

We provide pretrained checkpoints of RQ-VAEs and RQ-Transformers to reproduce the results in the paper. Please use the links below to download tar.gz files and unzip the pretrained checkpoints. Each link contains pretrained checkpoints of RQ-VAE and RQ-Transformer and their model configurations.

Dataset RQ-VAE & RQ-Transformer # params of RQ-Transformer FID
FFHQ link 355M 10.38
LSUN-Church link 370M 7.45
LSUN-Cat link 612M 8.64
LSUN-Bedroom link 612M 3.04
ImageNet (cIN) link 480M 15.72
ImageNet (cIN) link 821M 13.11
ImageNet (cIN) link 1.4B 11.56 (4.45)
ImageNet (cIN) link 1.4B 8.71 (3.89)
ImageNet (cIN) link 3.8B 7.55 (3.80)
CC-3M link 654M 12.33

FID scores above are measured based on original samples and generated images, and the scores in brackets are measured using 5% rejection sampling via pretrained ResNet-101. We do not provide the pipeline of rejection sampling in this repository.

(NOTE) Large-Scale RQ-Transformer for Text-to-Image Generation

We also provide the pretrained checkpoint of large-scale RQ-Transformer for text-to-image (T2I) generation. Our paper does not include the results of this large-scale RQ-Transformer for T2I generation, since we trained RQ-Transformer with 3.9B parameters on about 30 millions of text-to-image pairs from CC-3M, CC-12M, and YFCC-subset after the paper submission. Please use the link below to download the checkpoints of large-scale T2I model. We emphasize that any commercial use of our checkpoints is strictly prohibited.

Download of Pretrained RQ-Transformer on 30M text-image pairs

Dataset. RQ-VAE & RQ-Transformer # params
CC-3M + CC-12M + YFCC-subset link 3.9B

Evaluation of Large-Scale RQ-Transformer on MS-COCO

In this repository, we evaluate the pretrained RQ-Transformer with 3.9B parameters on MS-COCO. According to the evaluation protocol of DALL-Eval, we randomly select 30K text captions in val2014 split of MS-COCO and generate 256x256 images using the selected captions. We use (1024, 0.95) for top-(k, p) sampling, and FID scores of other models are from Table 2 in DALL-Eval paper.

Model # params # data Image / Grid Size FID on 2014val
X-LXMERT 228M 180K 256x256 / 8x8 37.4
DALL-E small 120M 15M 256x256 / 16x16 45.8
ruDALL-E-XL 1.3B 120M 256x256 / 32x32 18.6
minDALL-E 1.3B 15M 256x256 / 16x16 24.6
RQ-Transformer (ours) 3.9B 30M 256x256 / 8x8x4 16.9

Note that some text captions in MS-COCO are also included in the YFCC-subset, but the FIDs are not much different whether the duplicated captions are removed in the evaluation or not. See this paper for more details.

Examples of Text-to-Image (T2I) Generation using RQ-Transformer

We provide a jupyter notebook for you to easily enjoy text-to-image (T2I) generation of pretrained RQ-Transformers and the results ! After you download the pretrained checkpoints for T2I generation, open notebooks/T2I_sampling.ipynb and follows the instructions in the notebook file. We recommend to use a GPU such as NVIDIA V100 or A100, which has enough memory size over 32GB, considering the model size.

We attach some examples of T2I generation from the provided Jupyter notebook.

Examples of Generated Images from Text Conditions

a painting by Vincent Van Gogh
a painting by RENÉ MAGRITTE
Eiffel tower on a desert.
Eiffel tower on a mountain.
a painting of a cat with sunglasses in the frame.
a painting of a dog with sunglasses in the frame.

Training and Evaluation of RQ-VAE

Training of RQ-VAEs

Our implementation uses DistributedDataParallel in Pytorch for efficient training with multi-node and multi-GPU environments. Four NVIDIA A100 GPUs are used to train all RQ-VAEs in our paper. You can also adjust -nr, -np, and -nr according to your GPU setting.

  • Training 8x8x4 RQ-VAE on ImageNet 256x256 with a single node having four GPUs

    python -m torch.distributed.launch \
        --master_addr=$MASTER_ADDR \
        --master_port=$PORT \
        --nnodes=1 --nproc_per_node=4 --node_rank=0 \ 
        main_stage1.py \
        -m=configs/imagenet256/stage1/in256-rqvae-8x8x4.yaml -r=$SAVE_DIR
  • If you want to train 8x8x4 RQ-VAE on ImageNet using four nodes, where each node has one GPU, run the following scripts at each node with $RANK being the node rank (0, 1, 2, 3). Here, we assume that the master node corresponds to the node with rank 0.

    python -m torch.distributed.launch \
        --master_addr=$MASTER_ADDR \
        --master_port=$PORT \
        --nnodes=4 --nproc_per_node=1 --node_rank=$RANK \ 
        main_stage1.py \
        -m=configs/imagenet256/stage1/in256-rqvae-8x8x4.yaml -r=$SAVE_DIR

Finetuning of Pretrained RQ-VAE

  • To finetune a pretrained RQ-VAE on other datasets such as LSUNs, you have to load the pretrained checkpoints giving -l=$RQVAE_CKPT argument.
  • For example, when a pretrained RQ-VAE is finetuned on LSUN-Church, you can run the command below:
    python -m torch.distributed.launch \
        --master_addr=$MASTER_ADDR \
        --master_port=$PORT \
        --nnodes=1 --nproc_per_node=4 --node_rank=0 \ 
        main_stage1.py \
        -m=configs/lsun-church/stage1/church256-rqvae-8x8x4.yaml -r=$SAVE_DIR -l=$RQVAE_CKPT 

Evaluation of RQ-VAEs

Run compute_rfid.py to evaluate the reconstruction FID (rFID) of learned RQ-VAEs.

python compute_rfid.py --split=val --vqvae=$RQVAE_CKPT
  • The model checkpoint of RQ-VAE and its configuration yaml file have to be located in the same directory.
  • compute_rfid.py evaluates rFID of RQ-VAE on the dataset in the configuration file.
  • Adjust --batch-size as the memory size of your GPU environment.

Evaluation of RQ-Transformer

In this repository, the quantitative results in the paper can be reproduced by the codes for the evaluation of RQ-Transformer. Before the evaluation of RQ-Transformer on a dataset, the dataset has to be prepared for computing the feature vectors of its samples. To reproduce the results in the paper, we provide the statistics of feature vectors of each dataset, since extracting feature vectors accompanies computational costs and a long time. You can also prepare the datasets, which are used in our paper, as you follow the instructions of data/READMD.md.

  • Download the feature statistics of datasets as follows:
    cd assets
    wget https://arena.kakaocdn.net/brainrepo/etc/RQVAE/8b325b628f49bf60a3094fcf9419398c/fid_stats.tar.gz
    tar -zxvf fid_stats.tar.gz

FFHQ, LSUN-{Church, Bedroom, Cat}, (conditional) ImageNet

  • After the pretrained RQ-Transformer generates 50K images, FID (and IS) between the generated images and its training samples is computed.
  • You can input --save-dir to specify directory where the generated images are saved. If --save-dir is not given, the generated images are saved at the directory of the checkpoint.
  • When four GPUs in a single node are used, run the command below
    python -m torch.distributed.launch \
      --master_addr=$MASTER_ADDR \
      --master_port=$PORT \
      --nnodes=1 --nproc_per_node=4 --node_rank=0 \ 
      main_sampling_fid.py \
      -v=$RQVAE_CKPT -a=$RQTRANSFORMER_CKPT --save-dir=$SAVE_IMG_DIR

CC-3M

  • After the pretrained RQ-Transformer generates images using text captions of CC-3M validation set, FID between the validation images and generated images is computed together with CLIP score of generated images and their text conditions.
  • Evaluation of RQ-Transformer requires text prompts of cc-3m. Thus, please refer to data/READMD.md and prepare the dataset first.
  • When four GPUs in a single node are used, run the command below
    python -m torch.distributed.launch \
      --master_addr=$MASTER_ADDR \
      --master_port=$PORT \
      --nnodes=1 --nproc_per_node=4 --node_rank=0 \ 
      main_sampling_txt2img.py \
      -v=$RQVAE_CKPT -a=$RQTRANSFORMER_CKPT --dataset="cc3m" --save-dir=$SAVE_IMG_DIR

MS-COCO

  • We follow the protopocal of DALL-Eval to evaluate RQ-Transformer on MS-COCO, we use 30K samples, which are randomly selected in MS-COCO 2014val split, and provide the sampled samples as json file.
  • Evaluation of RQ-Transformer requires text prompts of MS_COCO. Thus, please refer to data/READMD.md and prepare the dataset first.
  • When four GPUs in a single node are used, run the command below
    python -m torch.distributed.launch \
      --master_addr=$MASTER_ADDR \
      --master_port=$PORT \
      --nnodes=1 --nproc_per_node=4 --node_rank=0 \ 
      main_sampling_txt2img.py \
      -v=$RQVAE_CKPT -a=$RQTRANSFORMER_CKPT --dataset="coco_2014val" --save-dir=$SAVE_IMG_DIR

NOTE

  • Unfortunately, we do not provide the training code of RQ-Transformer to avoid unexpected misuses by finetuning our checkpoints. We note that any commercial use of our checkpoints is strictly prohibited.
  • To accurately reproduce the reported results, the checkpoints of RQ-VAE and RQ-Transformer are correctly matched as described above.
  • The generated images are saved as .pkl files in the directory $DIR_SAVED_IMG.
  • For top-k and top-p sampling, the saved setting in the configuration file of pretrained checkpoints is used. If you want to use different top-(k,p) settings, use --top-k and --top-p in running the sampling scripts.
  • Once generated images are saved, compute_metrics.py can be used to evaluate the images again as follows:
python compute_metrics.py fake_path=$DIR_SAVED_IMG ref_dataset=$DATASET_NAME

Sampling speed benchmark

We provide the codes to measure the sampling speed of RQ-Transformer according to the code shape of RQ-VAEs, such as 8x8x4 or 16x16x1, as shown in Figure 4 in the paper. To reproduce the figure, run the following commands on NVIDIA A100 GPU:

# RQ-Transformer (1.4B) on 16x16x1 RQ-VAE (corresponds to VQ-GAN 1.4B model)
python -m measure_throughput f=16 d=1 c=16384 model=huge batch_size=100
python -m measure_throughput f=16 d=1 c=16384 model=huge batch_size=200
python -m measure_throughput f=16 d=1 c=16384 model=huge batch_size=500  # this will result in OOM.

# RQ-Transformer (1.4B) on 8x8x4 RQ-VAE
python -m measure_throughput f=32 d=4 c=16384 model=huge batch_size=100
python -m measure_throughput f=32 d=4 c=16384 model=huge batch_size=200
python -m measure_throughput f=32 d=4 c=16384 model=huge batch_size=500

BibTex

@article{lee2022autoregressive,
  title={Autoregressive Image Generation using Residual Quantization},
  author={Lee, Doyup and Kim, Chiheon and Kim, Saehoon and Cho, Minsu and Han, Wook-Shin},
  journal={arXiv preprint arXiv:2203.01941},
  year={2022}
}

Licenses

Contact

If you would like to collaborate with us or provide us a feedback, please contaus us,[email protected]

Acknowledgement

Our transformer-related implementation is inspired by minGPT and minDALL-E. We appreciate the authors of VQGAN for making their codes available to public.

Limitations

Since RQ-Transformer is trained on publicly available datasets, some generated images can include socially unacceptable contents according to the text conditions. When the problem occurs, please let us know the pair of "text condition" and "generated images".

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022