A dot matrix rendered using braille characters.

Overview

⣿ dotmatrix

A dot matrix rendered using braille characters.

PyPI PyPI - Python Version PyPI - License Checked with mypy Code style: black

Description

This library provides class called Matrix which represents a dot matrix that can be rendered to a string of Braille characters. In addition the class also provides some usefull functions for drawing all kinds of things onto said matrix.

A word on fonts...

This heavily relies on the font you want display the resulting characters with. Some "monospace" fonts/systems dot not treat all characters as having the same width! In particular this affects the blank braille character (this: ). The system that causes the most problems seems to be Windows while both mac OS and your average linux distribution don't screw it up. If you are having problems with the images in this readme you can have a look at the images included in the spoilers.

Install

Use can install this library from PyPI:

pip install dotmatrix

Example

Code

from dotmatrix import Matrix

m = Matrix(64, 64)

m.rectangle((0, 0), (63, 63))
m.circle((31, 31), 31)

print(m.render())

Output

⡏⠉⠉⠉⠉⠉⠉⠉⢉⡩⠭⠛⠛⠉⠉⠉⠉⠉⠙⠛⠫⠭⣉⠉⠉⠉⠉⠉⠉⠉⠉⢹
⡇⠀⠀⠀⠀⢀⡠⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⣀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⢸
⡇⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢⡀⠀⢸
⡇⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⢸
⣧⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⢸
⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣼
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿
⣷⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⢹
⡏⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡎⢸
⡇⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⢸
⡇⠀⠈⢢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⠀⠀⢸
⡇⠀⠀⠀⠑⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠁⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠈⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠊⠀⠀⠀⠀⠀⠀⢸
⣇⣀⣀⣀⣀⣀⣀⣀⣀⣈⣉⣒⣒⣤⣤⣤⣤⣤⣔⣒⣊⣉⣀⣀⣀⣀⣀⣀⣀⣀⣀⣸
image

This is what it should look like:

Drawing functions

As of now this library contains the following drawing functions:

  • scatter – Draws some points.
  • iscatter – Draws some points (from an iterator).
  • show – Draws an object implementing the Dotted protocol.
  • line – Draws a line.
  • chain – Draws a chain of segments.
  • polygon – Draws a polygon.
  • rectangle – Draws an axis aligned rectangle. (from two opposing corners)
  • cricle – Draws a circle.
  • ellipse – Draws an axis aligned ellipse.
  • curve – Draws a Bézier curve.
  • plot – Plots a series of XY-coordinates. (matplotlib.pyplot style)
  • plotf – Plots a function.
Dotted protocol
class Dotted(Protocol):
    """An object that can be drawn on a Matrix."""

    def __dots__(self) -> Iterable[Point]:
        """Generate the pixel positions representing this object.

        :return: pixels to draw
        :rtype: Iterable[Point]
        """

⚠️   The origin of the coordinate system, i.e. (0, 0), is at the top left corner!

Does it need to be Braille characters?

No, no it does not. It's just the default; you are free to choose how you want to render things. To facilitate this any given Matrix object internally makes use of an object implementing the Display protocol. For example this library implements, next to the Braille displays, some more display like Block or Unit.

Display protocol
class Display(Protocol[V, O]):
    """An object that can be used as a matrix display."""

    width: int
    height: int
    default_brush: V

    def __init__(
        self, width: int, height: int, *, default_brush: Union[V, UseDefault]
    ) -> None:
        """Initialize a matrix object.

        :param width: width of the matrix
        :type width: int
        :param height: height of the matrix
        :type height: int
        """

    def render(self) -> O:
        """Render the current matrix state.

        :return: render result
        :rtype: O
        """

    def __getitem__(self, pos: Point) -> V:
        """Get the value of a pixel.

        :param pos: position of pixel to get
        :type pos: Point
        :raises IndexError: requested pixel is out of the bounds of the matrix
        :return: state of the pixel
        :rtype: bool
        """

    def __setitem__(self, pos: Point, val: V):
        """Set the value of a pixel.

        :param pos: position of the pixel to set
        :type pos: Point
        :param val: the value to set the pixel to
        :type val: bool
        :raises IndexError: requested pixel is out of the bounds of the matrix
        """

Block display

Code

from dotmatrix import Matrix
from dotmatrix.displays import Block

# Using a different display is as simple as passing it
# into the display-argument of the initializer.
m = Matrix(16, 16, display=Block)

m.rectangle((0, 0), (15, 15))
m.circle((7, 7), 7)

print(m.render())

Output

█▀▀██▀▀▀▀▀██▀▀▀█
█▄▀         ▀▄ █
█▀           ▀▄█
█             ██
█             ██
██           █ █
█ ▀▄▄     ▄▄▀  █
█▄▄▄▄█████▄▄▄▄▄█

Unit display

Code

from dotmatrix import Matrix
from dotmatrix.displays import Block

# The following isn't required for using the Unit display.
# It's just here to demonstrate that you "pre-instantiate"
# a display and construct a Matrix object from it using
# Matrix.from_display.
d = Unit(16, 16, chars=["  ", "##"])
m = Matrix.from_display(d)

m.curve((0, 0), (15, 0), (0, 15), (15, 15))

print(m.render())

Output

########
        ####
            ##
              ##
              ##
              ##
              ##
              ##
                ##
                ##
                ##
                ##
                ##
                  ##
                    ##
                      ##########

More examples

Bézier flower

Code

from dotmatrix import Matrix

m = Matrix(64, 64)

m.curve((0, 0), (63, 0), (0, 63), (63, 63))
m.curve((0, 0), (0, 63), (63, 0), (63, 63))
m.curve((63, 0), (0, 0), (63, 63), (0, 63))
m.curve((63, 0), (63, 63), (0, 0), (0, 63))

print(m.render())

Output

⡏⠉⠉⠉⠉⠒⠒⠤⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠤⠒⠒⠉⠉⠉⠉⢹
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠒⢄⠀⠀⠀⠀⠀⠀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⡄⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜
⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⢰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃
⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀
⠀⠈⢢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡔⠁⠀
⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀
⠀⠀⠀⠀⠀⠉⠢⠤⢄⣀⣀⣀⣀⣀⣀⣸⣇⣀⣀⣀⣀⣀⣀⡠⠤⠔⠉⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⣀⠤⠒⠒⠉⠉⠉⠉⠉⠉⢹⡏⠉⠉⠉⠉⠉⠉⠒⠒⠤⣀⠀⠀⠀⠀⠀
⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀
⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀
⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀
⢰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆
⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠃⠀⠀⠘⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠊⠀⠀⠀⠀⠀⠀⠑⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⣇⣀⣀⣀⣀⠤⠤⠔⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⠤⣀⣀⣀⣀⣸
image

This is what it should look like:


Function plotting

Code

from dotmatrix import Matrix

m = Matrix(64, 64)

m.rectangle((0, 0), (63, 63))
m.plotf(
    lambda x: 0.005 * x ** 3,
    range(-31, 31),
    origin=(31,31),
)

print(m.render())

Output

⡏⠉⠉⠉⠉⠉⢹⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⢹
⡇⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢⢄⣀⣀⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⢸
⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⢸
⣇⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣸⣀⣀⣀⣀⣀⣀⣸
image

This is what it should look like:


Development

In case you want to add some code to this project your need to first make sure you have poetry installed. Afterwards you can run the following commands to get your setup up and running:

poetry install
poetry shell
pre-commit install

Due note that you will have to commit from inside the virtual environment or you need to have the dev-tools installed in your local python installation.

All PRs will be style checked with isort, pydocstyle and black as well as type checked with mypy. In addition to this all PRs should target the dev-branch and contain as many signed commits as possible (better yet only signed commits 😉 ). If you have no clue how or why to sign your commits have a look at the GitHub docs on this topic.

Comments
  • Bug: Bad images in README

    Bug: Bad images in README

    Description

    As you mentioned in reddit post, pictures of matrix can be broken due to browsers "smart" behaviour. This problem is on README too

    Code

    Not the code, only ask for use picture in README
    

    Output

    Will add picture in "Anything else?" section as I am not certain in posting picture here
    

    Anything else?

    Example: image

    bug 
    opened by Masynchin 2
  • Feature Request: Different

    Feature Request: Different "Character sets"

    Description

    One "nice to have" feature could be the addition of matrices that use other character sets for rendering. One nice set could be ▖▗▘▝▀▄▌▐▚▞▙▛▜▟█, i.e. a 2x2 grid per character.

    This could be accomplished by extracting all the character set dependent code into a subclass and leave an ABC that makes use of __getitem__, __setitem__, __init__, and render provided by the subclass.

    Code

    from dotmatrix import BlockMatrix
    
    m = BlockMatrix(16, 8)
    
    m.rectangle((0, 0), (15, 7))
    
    print(m.render())
    

    Output

    ▛▀▀▀▀▀▀▜
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▙▄▄▄▄▄▄▟
    

    Anything else?

    No response

    enhancement 
    opened by timfi 1
  • Feature: Display Abstraction

    Feature: Display Abstraction

    Closes #2

    What's the idea?

    One "nice to have" feature could be the addition of matrices that use other character sets for rendering. One nice set could be ▖▗▘▝▀▄▌▐▚▞▙▛▜▟█, i.e. a 2x2 grid per character.

    Code

    from dotmatrix import BlockMatrix
    
    m = BlockMatrix(16, 8)
    
    m.rectangle((0, 0), (15, 7))
    
    print(m.render())
    

    Output

    ▛▀▀▀▀▀▀▜
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▙▄▄▄▄▄▄▟
    

    from issue


    How did I accomplish this?

    To implement this I added the Display protocol/abstraction which describes all methods required for setting/getting pixel values and rendering said values to some useful output. The Braille logic has been moved to such a display (at dotmatrix.displays.Braille and remains the default display type. In addition to this I've also implemented a unicode block character display at dotmatrix.displays.Block.

    Code

    from dotmatrix import Matrix
    from dotmatrix.displays import Block
    
    m = Matrix(16, 16, display=Block)
    
    m.rectangle((0, 0), (15, 15))
    m.circle((7, 7), 7)
    
    print(m.render())
    

    Output

    █▀▀██▀▀▀▀▀██▀▀▀█
    █▄▀         ▀▄ █
    █▀           ▀▄█
    █             ██
    █             ██
    ██           █ █
    █ ▀▄▄     ▄▄▀  █
    █▄▄▄▄█████▄▄▄▄▄█
    
    opened by timfi 0
  • Feature: Display Abstraction and new Display-type

    Feature: Display Abstraction and new Display-type

    Closes #2

    What's the idea?

    One "nice to have" feature could be the addition of matrices that use other character sets for rendering. One nice set could be ▖▗▘▝▀▄▌▐▚▞▙▛▜▟█, i.e. a 2x2 grid per character.

    Code

    from dotmatrix import BlockMatrix
    
    m = BlockMatrix(16, 8)
    
    m.rectangle((0, 0), (15, 7))
    
    print(m.render())
    

    Output

    ▛▀▀▀▀▀▀▜
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▌      ▐
    ▙▄▄▄▄▄▄▟
    

    from issue


    How did I accomplish this?

    To implement this I added the Display protocol/abstraction which describes all methods required for setting/getting pixel values and rendering said values to some useful output. The Braille logic has been moved to such a display (at dotmatrix.displays.Braille and remains the default display type. In addition to this I've also implemented a unicode block character display at dotmatrix.displays.Block.

    Code

    from dotmatrix import Matrix
    from dotmatrix.displays import Block
    
    m = Matrix(16, 16, display=Block)
    
    m.rectangle((0, 0), (15, 15))
    m.circle((7, 7), 7)
    
    print(m.render())
    

    Output

    █▀▀██▀▀▀▀▀██▀▀▀█
    █▄▀         ▀▄ █
    █▀           ▀▄█
    █             ██
    █             ██
    ██           █ █
    █ ▀▄▄     ▄▄▀  █
    █▄▄▄▄█████▄▄▄▄▄█
    
    enhancement 
    opened by timfi 0
  • Feature Request: Matrix manipulation

    Feature Request: Matrix manipulation

    Description

    It would be nice to be able to rotate/transpose/crop/shift/etc. any give matrix.

    Code

    from dotmatrix import Matrix
    
    m = Matrix(5, 5)
    
    print("Initial")
    m.polygon((0, 0), (0, 4), (4, 4))
    print(m.render())
    
    print("Transposed")
    m.transpose()
    print(m.render())
    

    Output

    Initial
    ⡗⢄⠀
    ⠉⠉⠁
    Transposed
    ⠙⢍⡇
    ⠀⠀⠁
    

    Anything else?

    No response

    enhancement 
    opened by timfi 0
  • Feature Request: Dithered Images

    Feature Request: Dithered Images

    Description

    An amazing feature would be the ability to render a given image onto a dotmatrix. And to make things prettier some sort of dithering, be it Floyd-Steinberg or Atkinson or something else entirely, would also be nice.

    Code

    import dotmatrix as dm
    
    m = dm.Matrix(256, 256)
    
    m.blit(
        "path/to/my/image",
        area=((63, 63), (191, 191)),  # The area to blit the image to.
        dither=dm.dither.Floyd        # The dithering algorithm to use.
    )
    
    print(m.render())
    

    or

    import dotmatrix as dm
    from PIL import Image
    
    
    m = dm.Matrix(256, 256)
    img = Image.open("path/to/my/image")
    
    m.blit(
        img,
        area=((63, 63), (191, 191)),  # The area to blit the image to.
        dither=dm.dither.Floyd        # The dithering algorithm to use.
    )
    
    print(m.render())
    

    Output

    No response

    Anything else?

    Example: DotArt by Garrett Albright

    The latter example usage would require pillow as dependency. Thus it might be sensible to block this feature behind an "import guard" and add pillow as an extra-install-option, àla dotmatrix[images].

    enhancement 
    opened by timfi 0
Releases(v0.2.0)
  • v0.2.0(Aug 22, 2021)

    • Adds Display protocol to describe the low level drawing interface.
    • Adds 3 implementations of the Display protocol
      • display.Braille: as the name implies, this is existing "display mode"
      • display.Block: renders using unicode block charaters
      • display.Unit: renders using two given charaters for each state (0 vs. 1)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Aug 16, 2021)

  • v0.1.0(Aug 16, 2021)

    Initial Alpha Release! 🥳

    Presenting a python library for drawing things using Braille characters.

    Note that this release has been janked from PyPI due to ambiguous license declarations!

    Source code(tar.gz)
    Source code(zip)
Service for working with open data of the State Duma of the Russian Federation

Сервис для работы с открытыми данными Госдумы РФ Исходные данные из API Госдумы РФ извлекаются с помощью Apache Nifi и приземляются в хранилище Clickh

Aleksandr Sergeenko 2 Feb 14, 2022
Auto Join Zoom Meeting

Auto-Join-Zoom-Meeting Join a zoom meeting with out filling in meeting id's or passcodes, one button for it all! Setup See attached excel document. MA

JareBear 1 Jan 25, 2022
Hera is a Python framework for constructing and submitting Argo Workflows.

Hera is an Argo Workflows Python SDK. Hera aims to make workflow construction and submission easy and accessible to everyone! Hera abstracts away workflow setup details while still maintaining a cons

argoproj-labs 241 Jan 02, 2023
Create rangebased on lists or values of the range itself. Range any type. Can you imagine?

funcao-allrange-for-python3 Create rangebased on lists or values of the range itself. Range any type. Can you imagine? WARNING!!! THIS MODULE DID NOT

farioso-fernando 1 Feb 09, 2022
Tool for working with Direct System Calls in Cobalt Strike's Beacon Object Files (BOF) via Syswhispers2

Tool for working with Direct System Calls in Cobalt Strike's Beacon Object Files (BOF) via Syswhispers2

150 Dec 31, 2022
Reference management solution using Python and Notion.

notion-scholar Reference management solution using Python and Notion. The main idea of this app is to allow to furnish a Notion database using a BibTe

Thomas Hirtz 69 Dec 21, 2022
combs is a package used to generate all possible combinations of a given length k on a given set.

The package combs is a package used to generate all possible combinations of a given length k on a given set. The set is given as a list, and k must b

1 Dec 24, 2021
An extended, game oriented, turtle

Burtle A Better TURTLE. Makes making games easier. write less do more!! Documentation & guide: https://alannxq.github.io/burtle/ Installation pip inst

5 May 19, 2022
Basic infrastructure for writing scripts in Python

Base Script Python is an excellent language that makes writing scripts very straightforward. Over the course of writing many scripts, we realized that

Deep Compute, LLC 9 Jan 07, 2023
Cairo-integer-types - A library for bitwise integer types (e.g. int64 or uint32) in Cairo, with a test suite

The Cairo bitwise integer library (cairo-bitwise-int v0.1.1) The Cairo smart tes

27 Sep 23, 2022
Convert Roman numerals to modern numerals and vice-versa

Roman Numeral Conversion Utilities This is a utility module for converting from and to Roman numerals. It supports numbers upto 3,999,999, using the v

Fictive Kin 1 Dec 17, 2021
This synchronizes my appearances with my calendar

Josh's Schedule Synchronizer Here's the "problem:" I use a Google Sheets spreadsheet to maintain all my public appearances.

Developer Advocacy 2 Oct 18, 2021
Proyecto desarrollado para el programa #FutureDevelopers, tabla periódica interactiva.

Tabla_Periodica Proyecto desarrollado para el programa #FutureDevelopers, tabla periódica interactiva. Descripcion primer entregable: Tabla periodica

1 Dec 04, 2021
HSPyLib is a Python library that will elevate your experience to another level.

HomeSetup Python Library - HSPyLib Your mature python application HSPyLib is a Python library that will elevate your experience to another level. It r

Hugo Saporetti Junior 4 Dec 14, 2022
Pylexa - Artificial Assistant made with Python

Pylexa - Artificial Assistant made with Python Alexa is a famous artificial assistant used massively across the world. It is a substitute of Alexa whi

\_PROTIK_/ 4 Nov 03, 2021
an elegant datasets factory

rawbuilder an elegant datasets factory Free software: MIT license Documentation: https://rawbuilder.readthedocs.io. Features Schema oriented datasets

Mina Farag 7 Nov 12, 2022
An end-to-end encrypted chat

An end-to-end encrypted chat, that allows users to anonymously talk without ip logs, personal info, or need for registration.

Privalise 1 Nov 27, 2021
IPython: Productive Interactive Computing

IPython: Productive Interactive Computing Overview Welcome to IPython. Our full documentation is available on ipython.readthedocs.io and contains info

IPython 15.6k Dec 31, 2022
Alerts for Western Australian Covid-19 exposure locations via email and Slack

WA Covid Mailer Sends alerts from Healthy WA's Covid19 Exposure Locations via email and slack. Setup Edit the configuration items in wacovidmailer.py

13 Mar 29, 2022
A simple and easy to use Python's PIP configuration manager, similar to the Arch Linux's Java manager.

PIPCONF - The PIP configuration manager If you need to manage multiple configurations containing indexes and trusted hosts for PIP, this project was m

João Paulo Carvalho 11 Nov 30, 2022