Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Overview

Minimal PyTorch implementation of Generative Latent Optimization

This is a reimplementation of the paper

Piotr Bojanowski, Armand Joulin, David Lopez-Paz, Arthur Szlam:
Optimizing the Latent Space of Generative Networks

I'm not one of the authors. I just reimplemented parts of the paper in PyTorch for learning about PyTorch and generative models. Also, I liked the idea in the paper and was surprised that the approach actually works.

Implementation of the Laplacian pyramid L1 loss is inspired by https://github.com/mtyka/laploss. DCGAN network architecture follows https://github.com/pytorch/examples/tree/master/dcgan.

Running the code

First, install the required packages. For example, in Anaconda, you can simple do

conda install pytorch torchvision -c pytorch
conda install scikit-learn tqdm plac python-lmdb pillow

Download the LSUN dataset (only the bedroom training images are used here) into $LSUN_DIR. Then, simply run:

python glo.py $LSUN_DIR

You can learn more about the settings by running python glo.py --help.

Results

Unless mentioned otherwise, results are shown from a run over only a subset of the data (100000 samples - can be specified via the -n argument). Optimization was performed for only 25 epochs. The images below show reconstructions from the optimized latent space.

Results with 100-dimensional representation space look quite good, similar to the results shown in Fig. 1 in the paper.

python glo.py $LSUN_DIR -o d100 -gpu -d 100 -n 100000

Training for more epochs and from the whole dataset will make the images even sharper. Here are results (with 100D latent space) from a longer run of 50 epochs on the full dataset.

python glo.py $LSUN_DIR -o d100_full -gpu -d 100 -e 50

I'm not sure how many pyramid levels the authors used for the Laplacian pyramid L1 loss (here, we use 3 levels, but more might be better ... or not). But these results seem close enough.


Results with 512-dimensional representation space:

python glo.py $LSUN_DIR -o d512 -gpu -d 512 -n 100000

One of the main contributions of the paper is the use of the Laplacian pyramid L1 loss. Lets see how it compares to reconstructions using a simple L2 loss, again from 100-d representation space:

python glo.py $LSUN_DIR -o d100_l2 -gpu -d 512 -n 100000 -l l2


Comparison to L2 reconstruction loss, 512-d representation space:

python glo.py $LSUN_DIR -o d512_l2 -gpu -d 512 -n 100000 -l l2

I observed that initialization of the latent vectors with PCA is very crucial. Below are results from (normally distributed) random latent vectors. After 25 epochs, loss is only 0.31 (when initializing from PCA, loss after only 1 epoch is already 0.23). Reconstructions look really blurry.

python glo.py $LSUN_DIR -o d100_rand -gpu -d 100 -n 100000 -i random -e 500

It gets better after 500 epochs, but still very slow convergence and the results are not as clear as with PCA initialization.

Owner
Thomas Neumann
Thomas Neumann
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
Nicholas Lee 3 Jan 09, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022