TrTr: Visual Tracking with Transformer

Related tags

Deep LearningTrTr
Overview

TrTr: Visual Tracking with Transformer

We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder architecture to gain global and rich contextual interdependencies. In this new architecture, features of the template image is processed by a self-attention module in the encoder part to learn strong context information, which is then sent to the decoder part to compute cross-attention with the search image features processed by another self-attention module. In addition, we design the classification and regression heads using the output of Transformer to localize target based on shape-agnostic anchor. We extensively evaluate our tracker TrTr, on several benchmarks and our method performs favorably against state-of-the-art algorithms.

Network architecture of TrTr for visual tracking

Installation

Install dependencies

$ ./install.sh ~/anaconda3 trtr 

note1: suppose you have the anaconda installation path under ~/anaconda3.

note2: please select a proper cuda-toolkit version to install Pytorch from conda, the default is 10.1. However, for RTX3090, please select 11.0. Then the above installation command would be $ ./install.sh ~/anaconda3 trtr 11.0.

Activate conda environment

$ conda activate trtr

Quick Start: Using TrTr

Webcam demo

Offline Model

$ python demo.py --tracker.checkpoint networks/trtr_resnet50.pth --use_baseline_tracker

Online Model

$ python demo.py --tracker.checkpoint networks/trtr_resnet50.pth

image sequences (png, jpeg)

add option --video_name ${video_dir}

video (mp4 or avi)

add option --video_name ${video_name}

Benchmarks

Download testing datasets

Please read this README.md to prepare the dataset.

Basic usage

Test tracker

$ cd benchmark
$ python test.py --cfg_file ../parameters/experiment/vot2018/offline.yaml
  • --cfg_file: the yaml file containing the hyper-parameter for each datasets. Please check ./benchmark/parameters/experiment for more yaml files
    • online model for VOT2018: python test.py --cfg_file ../parameters/experiment/vot2018/online.yaml
    • online model for OTB: python test.py --cfg_file ../parameters/experiment/otb/online.yaml
  • --result_path: optional parameter to specify a directory to store the tracking result. Default value is results, which generate ./benchmark/results/${dataset_name}
  • --model_name: optional parameter to specify the name of tracker name under the result path. Default value is trtr, which yield a tracker directory of ./benchmark/results/${dataset_name}/trtr
  • --vis: visualize tracking
  • --repetition: repeat number. For example, you should assign --repetition 15 for VOT benchmark following the official evaluation.

Eval tracker

$ cd benchmark
$ python eval.py
  • --dataset: parameter to specify the benchmark. Default value is VOT2018. Please assign other bench name, e.g., OTB, VOT2019, UAV, etc.
  • --tracker_path: parameter to specify the result directory. Default value is ./benchmark/results. This is a parameter related to --result_path parameter in python test.py.
  • --num: parameter to specify the thread number for evaluation multiple tracker results. Default is 1.

(Option) Hyper-parameter search

$ python hp_search.py --tracker.checkpoint ../networks/trtr_resnet50.pth --tracker.search_sizes 280 --separate --repetition 1  --use_baseline_tracker --tracker.model.transformer_mask True

Train

Download training datasets

Please read this README.md to prepare the training dataset.

Download VOT2018 dataset

  1. Please download VOT2018 dataset following [this REAMDE], which is necessary for testing the model during training.
  2. Or you skip this testing process by assigning several parameter, which are explained later.

Test with single GPU

$ python main.py  --cfg_file ./parameters/train/default.yaml --output_dir train

note1: please check ./parameters/train/default.yaml for the parameters for training note2: --output_dir to assign the path to store the training result. The above commmand genearte ./train note3: maybe you have to modify the file limit: ulimit -n 8192. Write in ~/.bashrc maybe better. note4: you can a larger value for --benchmark_start_epoch than for --epochs to skip benchmark test. e.g., --benchmark_start_epoch 21 and --epochs 20

debug mode for quick checking the training process:

$ python main.py  --cfg_file ./parameters/train/default.yaml  --batch_size 16 --dataset.paths ./datasets/yt_bb/dataset/Curation  ./datasets/vid/dataset/Curation/ --dataset.video_frame_ranges 3 100  --dataset.num_uses 100 100  --dataset.eval_num_uses 100 100  --resume networks/trtr_resnet50.pth --benchmark_start_epoch 0 --epochs 10

Multi GPUs

multi GPUs in single machine

$ python -m torch.distributed.launch --nproc_per_node=2 --use_env main.py --cfg_file ./parameters/train/default.yaml --output_dir train

--nproc_per_node: is the number of GPU to use. The above command means use two GPUs in a machine.

multi GPUs in multi machines

Master Machine

$ python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --node_rank=0 --master_addr="${MASTER_IP_ADDRESS}" --master_port=${port} --use_env main.py --cfg_file ./parameters/train/default.yaml --output_dir train  --benchmark_start_epoch 8
  • --nnodes: number of machine to use. The above command means two machines.
  • --node_rank: the id for each machine. Master should be 0.
  • master_addr: assign the IP address of master machine
  • master_port: open port (e.g., 8080)

Slave1 Machine

$ python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --node_rank=1 --master_addr="${MASTER_IP_ADDRESS}" --master_port=${port} --use_env main.py --cfg_file ./parameters/train/default.yaml
Owner
趙 漠居(Zhao, Moju)
Project Lecture in the Uiversity of Tokyo.
趙 漠居(Zhao, Moju)
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022