Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

Overview

StrengthNet

Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

https://arxiv.org/abs/2110.03156

Dependency

Ubuntu 18.04.5 LTS

  • GPU: Quadro RTX 6000
  • Driver version: 450.80.02
  • CUDA version: 11.0

Python 3.5

  • tensorflow-gpu 2.0.0b1 (cudnn=7.6.0)
  • scipy
  • pandas
  • matplotlib
  • librosa

Environment set-up

For example,

conda create -n strengthnet python=3.5
conda activate strengthnet
pip install -r requirements.txt
conda install cudnn=7.6.0

Usage

  1. Run python utils.py to extract .wav to .h5;

  2. Run python train.py to train a CNN-BLSTM based StrengthNet;

Evaluating new samples

  1. Put the waveforms you wish to evaluate in a folder. For example, / /

  2. Run python test.py --rootdir / /

This script will evaluate all the .wav files in / / , and write the results to / / /StrengthNet_result_raw.txt .

By default, the output/strengthnet.h5 pretrained model is used.

Citation

If you find this work useful in your research, please consider citing:

@misc{liu2021strengthnet,
      title={StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis}, 
      author={Rui Liu and Berrak Sisman and Haizhou Li},
      year={2021},
      eprint={2110.03156},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

Resources

The ESD corpus is released by the HLT lab, NUS, Singapore.

The strength scores for the English samples of the ESD corpus are available here.


Acknowledgements:

MOSNet: https://github.com/lochenchou/MOSNet

Relative Attributes: Relative Attributes

License

This work is released under MIT License (see LICENSE file for details).

Owner
RuiLiu
https://ttslr.github.io/
RuiLiu
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022