Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Overview

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Work accepted at NeurIPS'21 [paper, video].

If you use this code in an academic context, please cite our work:

@article{hagenaarsparedesvalles2021ssl,
  title={Self-Supervised Learning of Event-Based Optical Flow with Spiking Neural Networks},
  author={Hagenaars, Jesse and Paredes-Vall\'es, Federico and de Croon, Guido},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

This code allows for the reproduction of the experiments leading to the results in Section 4.1.

Usage

This project uses Python >= 3.7.3 and we strongly recommend the use of virtual environments. If you don't have an environment manager yet, we recommend pyenv. It can be installed via:

curl https://pyenv.run | bash

Make sure your ~/.bashrc file contains the following:

export PATH="$HOME/.pyenv/bin:$PATH"
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"

After that, restart your terminal and run:

pyenv update

To set up your environment with pyenv first install the required python distribution and make sure the installation is successful (i.e., no errors nor warnings):

pyenv install -v 3.7.3

Once this is done, set up the environment and install the required libraries:

pyenv virtualenv 3.7.3 event_flow
pyenv activate event_flow

pip install --upgrade pip==20.0.2

cd event_flow/
pip install -r requirements.txt

Download datasets

In this work, we use multiple datasets:

These datasets can be downloaded in the expected HDF5 data format from here, and are expected at event_flow/datasets/data/ (as shown above).

Download size: 19.4 GB. Uncompressed size: 94 GB.

Details about the structure of these files can be found in event_flow/datasets/tools/.

Download models

The pretrained models can be downloaded from here, and are expected at event_flow/mlruns/.

In this project we use MLflow to keep track of the experiments. To visualize the models that are available, alongside other useful details and evaluation metrics, run the following from the home directory of the project:

mlflow ui

and access http://127.0.0.1:5000 from your browser of choice.

Inference

To estimate optical flow from event sequences from the MVSEC dataset and compute the average endpoint error and percentage of outliers, run:

python eval_flow.py <model_name> --config configs/eval_MVSEC.yml

# for example:
python eval_flow.py LIFFireNet --config configs/eval_MVSEC.yml

where <model_name> is the name of MLflow run to be evaluated. Note that, if a run does not have a name (this would be the case for your own trained models), you can evaluated it through its run ID (also visible through MLflow).

To estimate optical flow from event sequences from the ECD or HQF datasets, run:

python eval_flow.py <model_name> --config configs/eval_ECD.yml
python eval_flow.py <model_name> --config configs/eval_HQF.yml

# for example:
python eval_flow.py LIFFireNet --config configs/eval_ECD.yml

Note that the ECD and HQF datasets lack ground truth optical flow data. Therefore, we evaluate the quality of the estimated event-based optical flow via the self-supervised FWL (Stoffregen and Scheerlinck, ECCV'20) and RSAT (ours, Appendix C) metrics.

Results from these evaluations are stored as MLflow artifacts.

In configs/, you can find the configuration files associated to these scripts and vary the inference settings (e.g., number of input events, activate/deactivate visualization).

Training

Run:

python train_flow.py --config configs/train_ANN.yml
python train_flow.py --config configs/train_SNN.yml

to train an traditional artificial neural network (ANN, default: FireNet) or a spiking neural network (SNN, default: LIF-FireNet), respectively. In configs/, you can find the aforementioned configuration files and vary the training settings (e.g., model, number of input events, activate/deactivate visualization). For other models available, see models/model.py.

Note that we used a batch size of 8 in our experiments. Depending on your computational resources, you may need to lower this number.

During and after the training, information about your run can be visualized through MLflow.

Uninstalling pyenv

Once you finish using our code, you can uninstall pyenv from your system by:

  1. Removing the pyenv configuration lines from your ~/.bashrc.
  2. Removing its root directory. This will delete all Python versions that were installed under the $HOME/.pyenv/versions/ directory:
rm -rf $HOME/.pyenv/
Owner
TU Delft
TU Delft - MAVLab
TU Delft
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022