Image Matching Evaluation

Related tags

Deep LearningIME
Overview

Image Matching Evaluation (IME)

IME provides to test any feature matching algorithm on datasets containing ground-truth homographies.

Also, one can reproduce the results given in our paper Effect of Parameter Optimization on Classical and Learning-based Image Matching Methods published in ICCV 2021 TradiCV Workshop.

Currently Supported Algorithms

Classical Learning-Based
SIFT SuperPoint
SURF SuperGlue
ORB Patch2Pix
KAZE DFM
AKAZE

Environment Setup

This repository is created using Anaconda.

Open a terminal in the IME folder and run the following commands;

  1. Run bash script to create environment for IME, download algorithms and datasets
bash install.sh
  1. Activate the environment
conda activate ime
  1. Run IME!
python3 main.ipy

Well done, you can find results on Results folder :)

Notes:

  1. For DFM algorithm you can arrange ratio test threshold using DFM/python/algorithm_wrapper_util.py by changing ratio_th (default = [0.9, 0.9, 0.9, 0.9, 0.95, 1.0]).

    For all classical algorithms you can arrange ratio test threshold by changing the ratio parameter of mnn_ratio_matcher function in algorithm_wrapper_util.py for each algortihm.

    For SuperPoint again you should change ratio parameter of mnn_ratio_matcher function in algorithm_wrapper.py

    For Patch2Pix you should change io_thres parameter in algorithm_wrapper_util.py

  2. Use get_names.py to select algorithms and datasets.

  3. You can put your own algorithm on Algorithm folder to evaluate with creating a wrapper with the same format. This wrapper should output the matched pixel positions between two images using the selected algorithm.

  4. You can put your own dataset on Dataset folder to evaluate by arranging the proper format. Dataset should be in the form of Dataset/subset/subsubset/

Reproducing Results Given in our Paper

We provide the results given in our paper in ICCV_Results folder. To reproduce the results, you can run an experiment for a specific ratio test or confidence threshold and copy the results in the relevant ratio threshold folder in hpatches_classical or hpatches_deep folder. Then, you can run rt_fig.py and auc_fig.py scripts to save and view the figures.

TODO

Algorithms to be added:

Datasets to be added:

BibTeX Citation

Please cite our paper if you use the code:

@InProceedings{Efe_2021_ICCV,
    author    = {Efe, Ufuk and Ince, Kutalmis Gokalp and Alatan, Aydin},
    title     = {Effect of Parameter Optimization on Classical and Learning-based Image Matching Methods},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops},
    month     = {October},
    year      = {2021},
}
Owner
PhD student @ METU
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Contextual Attention Network: Transformer Meets U-Net

Contextual Attention Network: Transformer Meets U-Net Contexual attention network for medical image segmentation with state of the art results on skin

Reza Azad 67 Nov 28, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022