Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Related tags

Deep LearningReNode
Overview

Topology-Imbalance Learning for Semi-Supervised Node Classification

Introduction

Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Supervised Node Classification"

Overview Figure This work investigates the topology-imbalance problem of node representation learning on graph-structured data. Unlike the "quantity-imbalance" problem, the topology imbalance is caused by the topological properties of the labeled nodes, i.e., the locations of the labeled nodes on the graph can influence how information is spread over the entire graph.

The conflict-detection based metric Totoro is proposed for measuring the degree of topology imbalance. Moreover, the ReNode method is proposed to relieve the topology imbalance issue for both transductive setting and inductive setting.

Transductive Setting

a) Introduction

The code for the transductive setting semi-supervised learning. Including the CORA/CiteSeer/PubMed/Photo/Computers experiment datasets as shown in paper. It is implemented mainly based on pytorch_geometric project: https://github.com/rusty1s/pytorch_geometric

b) Quick Start

  • Prepare conda enviroment; more package info can be found in "requirements.txt"
  • Set the operations in 'opt.py'; some important operations are listed:
    1. Experiment Dataset (the dataset will be downloaded automatically at the first running time): set data_name = ['cora','citeseer','pubmed','photo','computers']
    2. Backbone GNN':
      set model = ['sgc','ppnp','gcn','gat','sage','cheb']
    3. Training Loss:
      set loss-name = ['ce','focal','re-weight','cb-softmax']
    4. ReNode Method:
      set renode-reweight = 1/0 to open/close ReNode
      set rn-base-weight as the lowerbound of the ReNode Factor
      set rn-scale-weight as the scale range of the ReNode Factor
    5. Imbalance Issue:
      set size-imb-type = 'none' if study TINL-only
      set size-imb-type = 'step' if study TINL&QINL
  • Running command: 'python transductive_run.py'

Inductive Setting

a) Introduction

The code for the inductive setting semi-supervised learning. Including the Reddit and MAG-Scholar datasets. It is branched from the PPRGo project: https://github.com/TUM-DAML/pprgo_pytorch.

b) Quick Start

  • Prepare conda enviroment; more package info can be found in "requirements.txt"

  • Prepare the dataset file from the following public source:

    1. Reddit: https://github.com/TUM-DAML/pprgo_pytorch/blob/master/data/get_reddit.md
    2. MAG-Scholar: https://figshare.com/articles/dataset/mag_scholar/12696653/2
  • Set the operations in 'config.yaml'; some important operations are listed:

    1. ReNode Method:
      for baseline: set base_w = 1 and scale_w = 0
      for method: set base_w and scale_w
    2. Training Size:
      set ntrain_div_classes
    3. Imbalance Issue:
      set issue_type = 'tinl' if considering topology imbalance only
      set issue_type = 'qinl' if jointly considering topology- and quantity-imbalance
  • Running command: 'python inductive_run.py'

License

MIT License

Contact

Please feel free to email me (chendeli96 [AT] gmail.com) for any questions about this work.

Citation

@inproceedings{chen2021renode,
  author    = {Deli, Chen and Yankai, Lin and Guangxiang, Zhao and Xuancheng, Ren and Peng, Li and Jie, Zhou and Xu, Sun},
  title     = {{Topology-Imbalance Learning for Semi-Supervised Node Classification}},
  booktitle = {NeurIPS},
  year      = {2021}
}
Owner
Victor Chen
Victor Chen
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

Enrico Fini 73 Dec 18, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023