Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Related tags

Deep LearningReNode
Overview

Topology-Imbalance Learning for Semi-Supervised Node Classification

Introduction

Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Supervised Node Classification"

Overview Figure This work investigates the topology-imbalance problem of node representation learning on graph-structured data. Unlike the "quantity-imbalance" problem, the topology imbalance is caused by the topological properties of the labeled nodes, i.e., the locations of the labeled nodes on the graph can influence how information is spread over the entire graph.

The conflict-detection based metric Totoro is proposed for measuring the degree of topology imbalance. Moreover, the ReNode method is proposed to relieve the topology imbalance issue for both transductive setting and inductive setting.

Transductive Setting

a) Introduction

The code for the transductive setting semi-supervised learning. Including the CORA/CiteSeer/PubMed/Photo/Computers experiment datasets as shown in paper. It is implemented mainly based on pytorch_geometric project: https://github.com/rusty1s/pytorch_geometric

b) Quick Start

  • Prepare conda enviroment; more package info can be found in "requirements.txt"
  • Set the operations in 'opt.py'; some important operations are listed:
    1. Experiment Dataset (the dataset will be downloaded automatically at the first running time): set data_name = ['cora','citeseer','pubmed','photo','computers']
    2. Backbone GNN':
      set model = ['sgc','ppnp','gcn','gat','sage','cheb']
    3. Training Loss:
      set loss-name = ['ce','focal','re-weight','cb-softmax']
    4. ReNode Method:
      set renode-reweight = 1/0 to open/close ReNode
      set rn-base-weight as the lowerbound of the ReNode Factor
      set rn-scale-weight as the scale range of the ReNode Factor
    5. Imbalance Issue:
      set size-imb-type = 'none' if study TINL-only
      set size-imb-type = 'step' if study TINL&QINL
  • Running command: 'python transductive_run.py'

Inductive Setting

a) Introduction

The code for the inductive setting semi-supervised learning. Including the Reddit and MAG-Scholar datasets. It is branched from the PPRGo project: https://github.com/TUM-DAML/pprgo_pytorch.

b) Quick Start

  • Prepare conda enviroment; more package info can be found in "requirements.txt"

  • Prepare the dataset file from the following public source:

    1. Reddit: https://github.com/TUM-DAML/pprgo_pytorch/blob/master/data/get_reddit.md
    2. MAG-Scholar: https://figshare.com/articles/dataset/mag_scholar/12696653/2
  • Set the operations in 'config.yaml'; some important operations are listed:

    1. ReNode Method:
      for baseline: set base_w = 1 and scale_w = 0
      for method: set base_w and scale_w
    2. Training Size:
      set ntrain_div_classes
    3. Imbalance Issue:
      set issue_type = 'tinl' if considering topology imbalance only
      set issue_type = 'qinl' if jointly considering topology- and quantity-imbalance
  • Running command: 'python inductive_run.py'

License

MIT License

Contact

Please feel free to email me (chendeli96 [AT] gmail.com) for any questions about this work.

Citation

@inproceedings{chen2021renode,
  author    = {Deli, Chen and Yankai, Lin and Guangxiang, Zhao and Xuancheng, Ren and Peng, Li and Jie, Zhou and Xu, Sun},
  title     = {{Topology-Imbalance Learning for Semi-Supervised Node Classification}},
  booktitle = {NeurIPS},
  year      = {2021}
}
Owner
Victor Chen
Victor Chen
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Augmentation for Single-Image-Super-Resolution

SRAugmentation Augmentation for Single-Image-Super-Resolution Implimentation CutBlur Cutout CutMix Cutup CutMixup Blend RGBPermutation Identity OneOf

Yubo 6 Jun 27, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022