NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

Overview

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT

License: MIT docs

Still in alpha, lots of changes anticipated. View demo on neuralqa.fastforwardlabs.com.

NeuralQA provides an easy to use api and visual interface for Extractive Question Answering (QA), on large datasets. The QA process is comprised of two main stages - Passage retrieval (Retriever) is implemented using ElasticSearch and Document Reading (Reader) is implemented using pretrained BERT models via the Huggingface Transformers api.

Usage

pip3 install neuralqa

Create (or navigate to) a folder you would like to use with NeuralQA. Run the following command line instruction within that folder.

neuralqa ui --port 4000

navigate to http://localhost:4000/#/ to view the NeuralQA interface. Learn about other command line options in the documentation here or how to configure NeuralQA to use your own reader models or retriever instances.

Note: To use NeuralQA with a retriever such as ElasticSearch, follow the instructions here to download, install, and launch a local elasticsearch instance and add it to your config.yaml file.

How Does it Work?

NeuralQA is comprised of several high level modules:

  • Retriever: For each search query (question), scan an index (elasticsearch), and retrieve a list of candidate matched passages.

  • Reader: For each retrieved passage, a BERT based model predicts a span that contains the answer to the question. In practice, retrieved passages may be lengthy and BERT based models can process a maximum of 512 tokens at a time. NeuralQA handles this in two ways. Lengthy passages are chunked into smaller sections with a configurable stride. Secondly, NeuralQA offers the option of extracting a subset of relevant snippets (RelSnip) which a BERT reader can then scan to find answers. Relevant snippets are portions of the retrieved document that contain exact match results for the search query.

  • Expander: Methods for generating additional (relevant) query terms to improve recall. Currently, we implement Contextual Query Expansion using finetuned Masked Language Models. This is implemented via a user in the loop flow where the user can choose to include any suggested expansion terms.

  • User Interface: NeuralQA provides a visual user interface for performing queries (manual queries where question and context are provided as well as queries over a search index), viewing results and also sensemaking of results (reranking of passages based on answer scores, highlighting keyword match, model explanations).

Configuration

Properties of modules within NeuralQA (ui, retriever, reader, expander) can be specified via a yaml configuration file. When you launch the ui, you can specify the path to your config file --config-path. If this is not provided, NeuralQA will search for a config.yaml in the current folder or create a default copy) in the current folder. Sample configuration shown below:

ui:
  queryview:
    intro:
      title: "NeuralQA: Question Answering on Large Datasets"
      subtitle: "Subtitle of your choice"
    views: # select sections of the ui to hide or show
      intro: True
      advanced: True
      samples: False
      passages: True
      explanations: True
      allanswers: True
    options: # values for advanced options
      stride: ..
      maxpassages: ..
      highlightspan: ..

  header: # header tile for ui
    appname: NeuralQA
    appdescription: Question Answering on Large Datasets

reader:
  title: Reader
  selected: twmkn9/distilbert-base-uncased-squad2
  options:
    - name: DistilBERT SQUAD2
      value: twmkn9/distilbert-base-uncased-squad2
      type: distilbert
    - name: BERT SQUAD2
      value: deepset/bert-base-cased-squad2
      type: bert

Documentation

An attempt is being made to better document NeuralQA here - https://victordibia.github.io/neuralqa/.

Citation

A paper introducing NeuralQA and its components can be found here.

@article{dibia2020neuralqa,
    title={NeuralQA: A Usable Library for Question Answering (Contextual Query Expansion + BERT) on Large Datasets},
    author={Victor Dibia},
    year={2020},
    journal={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations}
}
Owner
Victor Dibia
Research Engineer at Cloudera Fast Forward Labs, developer, designer! Interested in the intersection of Applied AI and HCI.
Victor Dibia
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
The official code for “DocTr: Document Image Transformer for Geometric Unwarping and Illumination Correction”, ACM MM, Oral Paper, 2021.

Good news! Our new work exhibits state-of-the-art performances on DocUNet benchmark dataset: DocScanner: Robust Document Image Rectification with Prog

Hao Feng 231 Dec 26, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084

Plan de Tecnologías del Lenguaje - Gobierno de España 203 Dec 20, 2022
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

17 Dec 14, 2022
Resources for "Natural Language Processing" Coursera course.

Natural Language Processing course resources This github contains practical assignments for Natural Language Processing course by Higher School of Eco

Advanced Machine Learning specialisation by HSE 1.1k Jan 01, 2023
Abhijith Neil Abraham 2 Nov 05, 2021
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger In this project, our aim is to tune, compare, and contrast the perf

Chirag Daryani 0 Dec 25, 2021
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese.

jel: Japanese Entity Linker jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese. Usage Currently, link and question methods

izuna385 10 Jan 06, 2023
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the

Anton Lozhkov 29 Oct 23, 2022
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022