Python script: Enphase Envoy mqtt json for Home Assistant

Overview

Python script: Enphase Envoy mqtt json for Home Assistant

A Python script that takes a real time stream from Enphase Envoy and publishes to a mqtt broker. This can then be used within Home Assistant or for other applications. The data updates at least once per second with negligible load on the Envoy.

Requirements

  • An Enphase Envoy. Note - Tested with Envoy-S-Metered-EU
  • A system running python3 with the paho.mqtt python library
  • The normal way to install paho.mqtt is
    pip install paho-mqtt
  • If that doesn't work, try
git clone https://github.com/eclipse/paho.mqtt.python
cd paho.mqtt.python
python setup.py install
  • The serial number of your Envoy. Can be obtained by browsing to "http://envoy.local"
  • The installer password for your envoy. To obtain, run the passwordCalc.py script using the Envoys serial number after first editing the file and inserting your serial number. Don't change the userName - it must be installer
  • A mqtt broker - this can be external or use the Mosquitto broker from the Home Assistant Add-on store
    • If you use the add-on, create a Home Assistant user/password for mqtt as described in the Mosquitto broker installation instructions

Install

  • Copy to host
  • Configure settings in envoy_to_mqtt_json.py

Run Script

/path/to/python3 /path/to/envoy_to_mqtt_json.py

Run it as a daemon - an example for macOs is to create a ~/Library/LaunchAgents/envoy.plist

Disabled EnvironmentVariables PATH /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/Apple/usr/bin:/usr/local/sbin KeepAlive Label envoy ProgramArguments /path/to/python3 /path/to/envoy_to_mqtt_json.py RunAtLoad ">



   

    
	
     
      Disabled
     
	
     
	
     
      EnvironmentVariables
     
	
     
		
      
       PATH
      
		
      
       /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/Apple/usr/bin:/usr/local/sbin
      
	
     
	
     
      KeepAlive
     
	
     
	
     
      Label
     
	
     
      envoy
     
	
     
      ProgramArguments
     
	
     
		
      
       /path/to/python3
      
		
      
       /path/to/envoy_to_mqtt_json.py
      
	
     
	
     
      RunAtLoad
     
	
     

    

   

Then use launchctl to load the plist from a terminal:

launchctl load ~/Library/LaunchAgents/envoy.plist

To stop it running use

launchctl unload ~/Library/LaunchAgents/envoy.plist

Run as systemd service on Ubuntu

Take note of where your python file has been saved as you need to point to it in the service file

/path/to/envoy_to_mqtt_json.py

Using a bash terminal

cd /etc/systemd/system

Create a file with your favourite file editor called envoy.service and add the following

[Unit]
Description=Envoy stream to MQTT

[Service]
Type=simple
ExecStart=/path/to/envoy_to_mqtt_json.py
Restart=on-failure

[Install]
WantedBy=multi-user.target

Save and close the file then run the following commands

sudo systemctl daemon-reload
sudo systemctl enable envoy.service
sudo systemctl start envoy.service

You can check the status of the service at any time by the command

systemctl status envoy

Note: this should work for any linux distribution that uses systemd services, but the instructions and locations may vary slightly.

Example output

The resulting mqtt topic should look like this example:

{
    "production": {
        "ph-a": {
            "p": 351.13,
            "q": 317.292,
            "s": 487.004,
            "v": 244.566,
            "i": 1.989,
            "pf": 0.72,
            "f": 50.0
        },
        "ph-b": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        },
        "ph-c": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        }
    },
    "net-consumption": {
        "ph-a": {
            "p": 21.397,
            "q": -778.835,
            "s": 865.208,
            "v": 244.652,
            "i": 3.539,
            "pf": 0.03,
            "f": 50.0
        },
        "ph-b": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        },
        "ph-c": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        }
    },
    "total-consumption": {
        "ph-a": {
            "p": 372.528,
            "q": -1096.126,
            "s": 1352.165,
            "v": 244.609,
            "i": 5.528,
            "pf": 0.28,
            "f": 50.0
        },
        "ph-b": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        },
        "ph-c": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        }
    }
}
__Note__: Data is provided for three phases - unused phases have values of `0.0`

Description of labels

"production": = Solar panel production - always positive value
"total-consumption": = Total Power consumed - always positive value
"net-consumption": = Total power Consumed minus Solar panel production. Will be positive when importing and negative when exporting
    
    "ph-a" = Phase A    
    "ph-b" = Phase B
    "ph-c" = Phase C

        "p": =  Real Power ** This is the one to use
        "q": =  Reactive Power
        "s": =  Apparent Power
        "v": =  Voltage
        "i": =  Current
        "pf": = Power Factor
        "f": =  Frequency

value_template configuration examples

value_template: '{{ value_json["total-consumption"]["ph-a"]["p"] }}' # Phase A Total power consumed by house
value_template: '{{ value_json["net-consumption"]["ph-c"]["p"] }}'   # Phase C - Total Power imported or exported
value_template: '{{ value_json["production"]["ph-b"]["v"] }}'   # Phase B - Voltage produced by panels

configuration.yaml configuration examples

# Example configuration.yaml entry
#
# Creates sensors with names such as sensor.mqtt_production
#
sensor:
  - platform: mqtt
    state_topic: "/envoy/json"
    name: "mqtt_production"
    qos: 0
    unit_of_measurement: "W"
    value_template: '{% if is_state("sun.sun", "below_horizon")%}0{%else%}{{ value_json["production"]["ph-a"]["p"]  | int }}{%endif%}'
    state_class: measurement
    device_class: power

  - platform: mqtt
    state_topic: "/envoy/json"
    value_template: '{{ value_json["total-consumption"]["ph-a"]["p"] }}'
    name: "mqtt_consumption"
    qos: 0
    unit_of_measurement: "W"
    state_class: measurement
    device_class: power

  - platform: mqtt
    state_topic: "/envoy/json"
    name: "mqtt_power_factor"
    qos: 0
    unit_of_measurement: "%"
    value_template: '{{ value_json["total-consumption"]["ph-a"]["pf"] }}'
    state_class: measurement
    device_class: power_factor

  - platform: mqtt
    state_topic: "/envoy/json"
    name: "mqtt_voltage"
    qos: 0
    unit_of_measurement: "V"
    value_template: '{{ value_json["total-consumption"]["ph-a"]["v"] }}'
    state_class: measurement
    device_class: voltage
#

Real time power display using Power Wheel Card

Here's the code if you'd like real-time visualisations of your power usage like this:

Power Wheel card:

active_arrow_color: '#FF0000'
color_icons: true
consuming_color: '#FF0000'
grid_power_consumption_entity: sensor.importing
grid_power_production_entity: sensor.exporting
home_icon: mdi:home-outline
icon_height: mdi:18px
producing_colour: '#00FF00'
solar_icon: mdi:solar-power
solar_power_entity: sensor.solarpower
title_power: ' '
type: custom:power-wheel-card

configuration.yaml:

sensor:
  
  #
  # These ones are for Envoy via mqtt
  #
  - platform: mqtt
    state_topic: "/envoy/json"
    name: "mqtt_production"
    qos: 0
    unit_of_measurement: "W"
    value_template: '{% if is_state("sun.sun", "below_horizon")%}0{%else%}{{ value_json["production"]["ph-a"]["p"]  | int }}{%endif%}'
    state_class: measurement
    device_class: power

  - platform: mqtt
    state_topic: "/envoy/json"
    value_template: '{{ value_json["total-consumption"]["ph-a"]["p"] }}'
    name: "mqtt_consumption"
    qos: 0
    unit_of_measurement: "W"
    state_class: measurement
    device_class: power

  - platform: template
    sensors:
      exporting:
        friendly_name: "Current MQTT Energy Exporting"
        value_template: "{{ [0, (states('sensor.mqtt_production') | int - states('sensor.mqtt_consumption') | int)] | max }}"
        unit_of_measurement: "W"
        icon_template: mdi:flash
      importing:
        friendly_name: "Current MQTT Energy Importing"
        value_template: "{{ [0, (states('sensor.mqtt_consumption') | int - states('sensor.mqtt_production') | int)] | max }}"
        unit_of_measurement: "W"
        icon_template: mdi:flash
      solarpower:
        friendly_name: "Solar MQTT Power"
        value_template: "{{ states('sensor.mqtt_production')}}"
        unit_of_measurement: "W"
        icon_template: mdi:flash
2021 Real Robot Challenge Phase2 attemp

Real_Robot_Challenge_Phase2_AE_attemp We(team name:thriftysnipe) are the first place winner of Phase1 in 2021 Real Robot Challenge. Please see this pa

Qiang Wang 2 Nov 15, 2021
Smart Tech Automation Remote via Kinematics Gesture control for IoT devices

STARK Smart Tech Automation Remote via Kinematics Gesture control for IoT devices View Demo · Report Bug · Request Feature Table of Contents About The

Juseong (Joe) Kim 1 Jan 29, 2022
Like htop (CPU and memory usage), but for your case LEDs. 😄

Like htop (CPU and memory usage), but for your case LEDs. 😄

Derek Anderson 3 Dec 08, 2021
An arduino/ESP project that can play back G-Force data previously recorded

An arduino/ESP project that can play back G-Force data previously recorded

7 Apr 12, 2022
circuitpython version of PyBasic for microcontrollers

cPyBasic Circuitpython version of PyBasic for microcontrollers Current version work only for Adafruit titano & CardKB for now. The origninal PyBasic w

BeBoXoS 3 Nov 14, 2021
A set of postprocessing scripts and macro to accelerate the gyroid infill print speed with Klipper

A set of postprocessing scripts and macro to accelerate the gyroid infill print speed with Klipper

Jérôme W. 75 Jan 07, 2023
BMP180 sensor driver for Home Assistant used in Raspberry Pi

BMP180 sensor driver for Home Assistant used in Raspberry Pi Custom component BMP180 sensor for Home Assistant. Copy the content of this directory to

747Developments 1 Dec 17, 2021
Plug and Play on Internet of Things with LoRa wireless modulation.

IoT-PnP Plug and Play on Internet of Things with LoRa wireless modulation. Device Side In the '505_PnP' folder has a modified ardunino template code s

Lambert Yang 1 May 19, 2022
An alternative to Demise-Assistant-Batch made entirely in Python for more capabilities.

Demise-Assistant-Python An alternative to Demise-Assistant-Batch made entirely in Python for more capabilities. IMPORTANT NOTE Demise-Assistant-Batch

SkelOrganisation 1 Nov 24, 2021
Raspberry Pi Power Button - Wake/Power Off/Restart(Double Press)

Control Raspberry pi with physically attached button. Wake, Power Off, and Restart (Double Press) . Python3 script runs as a service with easy installation.

Stas Yakobov 16 Oct 22, 2022
Tool to create 3D printable terrain with integrated path/road part files (Single material 3d printer)

BACKGROUND This has been an ongoing project of mine for a few months now. I run trails a lot and original the goal was to create a function to combine

9 Apr 26, 2022
🔆 A Python module for controlling power and brightness of the official Raspberry Pi 7

rpi-backlight A Python module for controlling power and brightness of the official Raspberry Pi 7" touch display. Note: This GIF was created using the

Linus Groh 238 Jan 08, 2023
How to configure IOMMU device for nested Proxmox hypervisor (PVE) VM - PCIe Passthrough

Configuring PCIe Passthrough for Nested Virtualization on Proxmox Summary: If you are running bare-metal L0 (level 0) Proxmox (PVE) hypervisor with ne

Travis Johnson 6 Aug 30, 2022
Claussoft Personal Digital Assistant

Claussoft Personal Digital Assistant Install on Linux $ sudo apt update $ sudo apt install espeak ffmpeg libespeak1 portaudio19-dev $ pip install -r r

Christian Clauss 3 Dec 14, 2022
Volkswagen ID component for Home Assistant

Volkswagen ID component for Home Assistant This folder contains both a generic Python 3 library for the Volkswagen ID API and a component for Home Ass

55 Jan 07, 2023
A python script for macOS to enable scrolling with the 3M ergonomic mouse EM500GPS in any application.

A python script for macOS to enable scrolling with the 3M ergonomic mouse EM500GPS in any application.

3 Feb 19, 2022
This repository hosts the code for Stanford Pupper and Stanford Woofer, Raspberry Pi-based quadruped robots that can trot, walk, and jump.

This repository hosts the code for Stanford Pupper and Stanford Woofer, Raspberry Pi-based quadruped robots that can trot, walk, and jump.

Stanford Student Robotics 1.2k Dec 25, 2022
🐱🖨Cat printer is a portable thermal printer sold on AliExpress for around $20.

Cat printer is a portable thermal printer sold on AliExpress for around $20. This repository contains Python code for talking to the cat printer over

671 Jan 05, 2023
This Home Assistant custom component adds support for controlling Midea dehumidiferes on local network.

This is a custom component for Home assistant that adds support for Midea dehumidifier appliances via the local area network. midea-dehumidifier-lan H

Nenad Bogojevic 97 Jan 08, 2023
OctoPrint is the snappy web interface for your 3D printer!

OctoPrint OctoPrint provides a snappy web interface for controlling consumer 3D printers. It is Free Software and released under the GNU Affero Genera

OctoPrint 7.1k Jan 03, 2023