Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

Related tags

Deep Learningmetasdf
Overview

MetaSDF: Meta-learning Signed Distance Functions

Project Page | Paper | Data

Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely
Gordon Wetzstein
*denotes equal contribution

This is the official implementation of the paper "MetaSDF: Meta-Learning Signed Distance Functions".

In this paper, we show how we may effectively learn a prior over implicit neural representations using gradient-based meta-learning.

While in the paper, we show this for the special case of SDFs with the ReLU nonlinearity, this works formidably well with other types of neural implicit representations - such as our work "SIREN"!

We show you how in our Colab notebook:

Explore MetaSDF in Colab

DeepSDF

A large part of this codebase (directory "3D") is based on the code from the terrific paper "DeepSDF" - check them out!

Get started

If you only want to experiment with MetaSDF, we have written a colab that doesn't require installing anything, and goes through a few other interesting properties of MetaSDF as well - for instance, it turns out you can train SIREN to fit any image in only just three gradient descent steps!

If you want to reproduce all the experiments from the paper, you can then set up a conda environment with all dependencies like so:

conda env create -f environment.yml
conda activate metasdf

3D Experiments

Dataset Preprocessing

Before training a model, you'll first need to preprocess the training meshes. Please follow the preprocessing steps used by DeepSDF if using ShapeNet.

Define an Experiment

Next, you'll need to define the model and hyperparameters for your experiment. Examples are given in 3D/curriculums.py, but feel free to make modifications. Although not present in the original paper, we've included some curriculums with positional encodings and smaller models. These generally perform on par with the original models but require much less memory.

Train a Model

After you've preprocessed your data and have defined your curriculum, you're ready to start training! Navigate to the 3D/scripts directory and run

python run_train.py <curriculum name>.

If training is interupted, pass the flag --load flag to continue training from where you left off.

You should begin seeing printouts of loss, with a summary at every epoch. Checkpoints and Tensorboard summaries are saved to the 'output_dir' directory, as defined in your curriculum. We log raw loss, which is either the composite loss or L1 loss, depending on your experiment definition, as well as a 'Misclassified Percentage'. The 'Misclassified Percentage' is the percentage of samples that the model incorrectly classified as inside or outside the mesh.

Reconstructing Meshes

After training a model, recontruct some meshes using

python run_reconstruct.py <curriculum name> --checkpoint <checkpoint file name>.

The script will use the 'test_split' as defined in the curriculum.

Evaluating Reconstructions

After reconstructing meshes, calculate Chamfer Distances between reconstructions and ground-truth meshes by running

python run_eval.py <reconstruction dir>.

Torchmeta

We're using the excellent torchmeta to implement hypernetworks.

Citation

If you find our work useful in your research, please cite:

       @inproceedings{sitzmann2019metasdf,
            author = {Sitzmann, Vincent
                      and Chan, Eric R.
                      and Tucker, Richard
                      and Snavely, Noah
                      and Wetzstein, Gordon},
            title = {MetaSDF: Meta-Learning Signed
                     Distance Functions},
            booktitle = {Proc. NeurIPS},
            year={2020}
       }

Contact

If you have any questions, please feel free to email the authors.

Owner
Vincent Sitzmann
I'm researching 3D-structured neural scene representations. Ph.D. student in Stanford's Computational Imaging Group.
Vincent Sitzmann
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022