AirCode: A Robust Object Encoding Method

Overview

AirCode

This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method"

Demo

Object matching comparison when the objects are non-rigid and the view is changed, left is the result of our method while right is the result of NetVLAD

Relocalization on KITTI datasets

Dependencies

  • Python
  • PyTorch
  • OpenCV
  • Matplotlib
  • NumPy
  • Yaml

Data

Four datasets are used in our experiments.

KITTI Odometry

For relocalization experiment. Three sequences are selected, and they are "00", "05" and "06".

KITTI Tracking

For multi-object matching experiment. Four sequences are selected, and they are "0002", "0003", "0006", "0010".

VOT Datasets

For single-object matching experiment. We select three sequences from VOT2019 datasets and they are "bluecar", "bus6" and "humans_corridor_occ_2_A", because the tracked objects in these sequences are included in coco datasets, which are the data we used to train mask-rcnn.

OTB Datasets

For single-object matching experiment. We select five sequences and they are "BlurBody", "BlurCar2", "Human2", "Human7" and "Liquor".

Examples

Relocalization on KITTI Datasets

  1. Extract object descrptors

    python experiments/place_recogination/online_relocalization.py -c config/experiment_tracking.yaml -g 1 -s PATH_TO_SAVE_MIDDLE_RESULTS -d PATH_TO_DATASET -m PATH_TO_MODELS
    
  2. Compute precision-recall curves

    python experiments/place_recogination/offline_process.py -c config/experiment_tracking.yaml -g 1 -d PATH_TO_DATASET -n PATH_TO_MIDDLE_RESULTS -s PATH_TO_SAVE_RESULTS
    
  3. Compute top-K relocalization results

    python experiments/place_recogination/offline_topK.py -c config/experiment_tracking.yaml -g 1 -d PATH_TO_DATASET -n PATH_TO_MIDDLE_RESULTS -s PATH_TO_SAVE_RESULTS
    

Object Matching on OTB, VOT or KITTI Tracking Datasets

  • Run multi-object matching experiment in KITTI Tracking Datasets Modify the config file and run

    python experiments/object_tracking/object_tracking.py -c config/experiment_tracking.yaml -g 1 -s PATH_TO_SAVE_RESULTS -d PATH_TO_DATASET -m PATH_TO_MODELS 
    
  • Run single-object matching experiment in OTB or VOT Datasets Modify the config file and run

    python experiments/object_tracking/single_object_tracking.py -c config/experiment_tracking.yaml -g 1 -s PATH_TO_SAVE_RESULTS -d PATH_TO_DATASET -m PATH_TO_MODELS 
    
You might also like...
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

 Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Code release for our paper,
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

Code and models for ICCV2021 paper
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Comments
  • how can I get *.pth files?

    how can I get *.pth files?

    Hello, I am a beginner. When I run python experiments/place_recogination/online_relocalization.py -c config/experiment_tracking.yaml -g 1 -s results/ -d /media/jixingwu/datasetj/KITTI/Odom/data_odometry_color/sequences -m models/, points_model.pth file is needed. So how can I get it? Thank you!

    opened by jixingwu 5
  • Unable to load model under CPU-only configuration

    Unable to load model under CPU-only configuration

    Hi, I want to run object tracking on KITTI tracking datasets with only CPU using the following terminal prompt:

      python experiments/object_tracking/object_tracking.py -c config/experiment_tracking.yaml -g 1 -s ./results -d /data/datasets/SLAM_dataset/training/ -m ./weights
    

    with configuration in object_tracking.py updated with

    configs['use_gpu'] = 0
    

    However, when running with the configuration above with gcn_model.pth, maskrcnn_model.pth, points_model.pth model files in release v2.0.0, the following error occurs:

    (aircode) [email protected]:~/workspace/AirCode$ python experiments/object_tracking/object_tracking.py -c config/experiment_tracking.yaml -g 1 -s ./results -d /data/datasets/SLAM_dataset/training/ -m ./weights
    experiments/object_tracking/object_tracking.py:371: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
      configs = yaml.load(configs)
    Traceback (most recent call last):
      File "experiments/object_tracking/object_tracking.py", line 384, in <module>
        main()
      File "experiments/object_tracking/object_tracking.py", line 381, in main
        show_object_tracking(configs)
      File "experiments/object_tracking/object_tracking.py", line 272, in show_object_tracking
        superpoint_model = build_superpoint_model(configs, requires_grad=False)
      File "./model/build_model.py", line 101, in build_superpoint_model
        model.load_state_dict(model_dict)
      File "/home/yutianc/minicondas/envs/aircode/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1052, in load_state_dict
        self.__class__.__name__, "\n\t".join(error_msgs)))
    RuntimeError: Error(s) in loading state_dict for VggLike:
            Unexpected key(s) in state_dict: "module.pretrained_net.features.0.weight", "module.pretrained_net.features.0.bias", "module.pretrained_net.features.2.weight", "module.pretrained_net.features.2.bias", "module.pretrained_net.features.5.weight", "module.pretrained_net.features.5.bias", "module.pretrained_net.features.7.weight", "module.pretrained_net.features.7.bias", "module.pretrained_net.features.10.weight", "module.pretrained_net.features.10.bias", "module.pretrained_net.features.12.weight", "module.pretrained_net.features.12.bias", "module.pretrained_net.features.14.weight", "module.pretrained_net.features.14.bias", "module.pretrained_net.features.17.weight", "module.pretrained_net.features.17.bias", "module.pretrained_net.features.19.weight", "module.pretrained_net.features.19.bias", "module.pretrained_net.features.21.weight", "module.pretrained_net.features.21.bias", "module.pretrained_net.features.24.weight", "module.pretrained_net.features.24.bias", "module.pretrained_net.features.26.weight", "module.pretrained_net.features.26.bias", "module.pretrained_net.features.28.weight", "module.pretrained_net.features.28.bias", "module.convPa.weight", "module.convPa.bias", "module.bnPa.weight", "module.bnPa.bias", "module.bnPa.running_mean", "module.bnPa.running_var", "module.bnPa.num_batches_tracked", "module.convPb.weight", "module.convPb.bias", "module.bnPb.weight", "module.bnPb.bias", "module.bnPb.running_mean", "module.bnPb.running_var", "module.bnPb.num_batches_tracked", "module.convDa.weight", "module.convDa.bias", "module.bnDa.weight", "module.bnDa.bias", "module.bnDa.running_mean", "module.bnDa.running_var", "module.bnDa.num_batches_tracked", "module.convDb.weight", "module.convDb.bias", "module.bnDb.weight", "module.bnDb.bias", "module.bnDb.running_mean", "module.bnDb.running_var", "module.bnDb.num_batches_tracked".
    

    Running object_tracking.py with CUDA seems to load models successfully. Is there something wrong with the model loading when GPU is disabled?

    opened by MarkChenYutian 4
  • Why RGB image is converted into grayscale image with 3 channels?

    Why RGB image is converted into grayscale image with 3 channels?

    Hi, I'm trying to use AirCode to do object matching on complete KITTI sequences and I'm reading the code in experiments/show_object_matching.py.

    While reading the code, I noticed that the current code is reading RGB image sequence, convert it into grayscale image, and then duplicate the image into 3-channel each with same value (as following):

    https://github.com/wang-chen/AirCode/blob/5e23e9f5322d2e4ee119d5326a6b6112cef0e6bd/experiments/show_object_matching/show_object_matching.py#L172-L176

    I'm a bit unsure about the reason why this operation is performed here as the original RGB image should contain more information about the object comparing to grayscale image. For instance, it should be easier to distinguish objects with different color but similar shape if the RGB value is preserved.

    opened by MarkChenYutian 2
Owner
Chen Wang
I am engaged in delivering simple and efficient source code.
Chen Wang
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022