The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

Overview

PlantStereo

This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Paper

PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction[preprint]

Qingyu Wang, Baojian Ma, Wei Liu, Mingzhao Lou, Mingchuan Zhou*, Huanyu Jiang and Yibin Ying

College of Biosystems Engineering and Food Science, Zhejiang University.

Example and Overview

We give an example of our dataset, including spinach, tomato, pepper and pumpkin.

The data size and the resolution of the images are listed as follows:

Subset Train Validation Test All Resolution
Spinach 160 40 100 300 1046×606
Tomato 80 20 50 150 1040×603
Pepper 150 30 32 212 1024×571
Pumpkin 80 20 50 150 1024×571
All 470 110 232 812

Analysis

We evaluated the disparity distribution of different stereo matching datasets.

Format

The data was organized as the following format, where the sub-pixel level disparity images are saved as .tiff format, and the pixel level disparity images are saved as .png format.

PlantStereo

├── PlantStereo2021

│          ├── tomato

│          │          ├── training

│          │          │         ├── left_view

│          │          │          │         ├── 000000.png

│          │          │          │         ├── 000001.png

│          │          │          │         ├── ......

│          │          │          ├── right_view

│          │          │          │         ├── ......

│          │          │          ├── disp

│          │          │          │         ├── ......

│          │          │          ├── disp_high_acc

│          │          │          │         ├── 000000.tiff

│          │          │          │         ├── ......

│          │          ├── testing

│          │          │          ├── left_view

│          │          │          ├── right_view

│          │          │          ├── disp

│          │          │          ├── disp_high_acc

│          ├── spinach

│          ├── ......

Download

You can use the following links to download out PlantStereo dataset.

Baidu Netdisk link
Google Drive link

Usage

  • sample.py

To construct the dataset, you can run the code in sample.py in your terminal:

conda activate <your_anaconda_virtual_environment>
python sample.py --num 0

We can registrate the image and transformate the coordinate through function mech_zed_alignment():

def mech_zed_alignment(depth, mech_height, mech_width, zed_height, zed_width):
    ground_truth = np.zeros(shape=(zed_height, zed_width), dtype=float)
    for v in range(0, mech_height):
        for u in range(0, mech_width):
            i_mech = np.array([[u], [v], [1]], dtype=float)  # 3*1
            p_i_mech = np.dot(np.linalg.inv(K_MECH), i_mech * depth[v, u])  # 3*1
            p_i_zed = np.dot(R_MECH_ZED, p_i_mech) + T_MECH_ZED  # 3*1
            i_zed = np.dot(K_ZED_LEFT, p_i_zed) * (1 / p_i_zed[2])  # 3*1
            disparity = ZED_BASELINE * ZED_FOCAL_LENGTH * 1000 / p_i_zed[2]
            u_zed = i_zed[0]
            v_zed = i_zed[1]
            coor_u_zed = round(u_zed[0])
            coor_v_zed = round(v_zed[0])
            if coor_u_zed < zed_width and coor_v_zed < zed_height:
                ground_truth[coor_v_zed][coor_u_zed] = disparity
    return ground_truth
  • epipole_rectification.py

    After collecting the left, right and disparity images throuth sample.py, we can perform epipole rectification on left and right images through epipole_rectification.py:

    python epipole_rectification.py

Citation

If you use our PlantStereo dataset in your research, please cite this publication:

@misc{PlantStereo,
    title={PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction},
    author={Qingyu Wang, Baojian Ma, Wei Liu, Mingzhao Lou, Mingchuan Zhou, Huanyu Jiang and Yibin Ying},
    howpublished = {\url{https://github.com/wangqingyu985/PlantStereo}},
    year={2021}
}

Acknowledgements

This project is mainly based on:

zed-python-api

mecheye_python_interface

Contact

If you have any questions, please do not hesitate to contact us through E-mail or issue, we will reply as soon as possible.

[email protected] or [email protected]

Owner
Wang Qingyu
A second-year Ph.D. student in Zhejiang University
Wang Qingyu
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Streamlit - Drawable Canvas Streamlit component which provides a sketching canvas using Fabric.js. Features Draw freely, lines, circles, boxes and pol

Fanilo Andrianasolo 325 Dec 28, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022