The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

Overview

PlantStereo

This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Paper

PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction[preprint]

Qingyu Wang, Baojian Ma, Wei Liu, Mingzhao Lou, Mingchuan Zhou*, Huanyu Jiang and Yibin Ying

College of Biosystems Engineering and Food Science, Zhejiang University.

Example and Overview

We give an example of our dataset, including spinach, tomato, pepper and pumpkin.

The data size and the resolution of the images are listed as follows:

Subset Train Validation Test All Resolution
Spinach 160 40 100 300 1046×606
Tomato 80 20 50 150 1040×603
Pepper 150 30 32 212 1024×571
Pumpkin 80 20 50 150 1024×571
All 470 110 232 812

Analysis

We evaluated the disparity distribution of different stereo matching datasets.

Format

The data was organized as the following format, where the sub-pixel level disparity images are saved as .tiff format, and the pixel level disparity images are saved as .png format.

PlantStereo

├── PlantStereo2021

│          ├── tomato

│          │          ├── training

│          │          │         ├── left_view

│          │          │          │         ├── 000000.png

│          │          │          │         ├── 000001.png

│          │          │          │         ├── ......

│          │          │          ├── right_view

│          │          │          │         ├── ......

│          │          │          ├── disp

│          │          │          │         ├── ......

│          │          │          ├── disp_high_acc

│          │          │          │         ├── 000000.tiff

│          │          │          │         ├── ......

│          │          ├── testing

│          │          │          ├── left_view

│          │          │          ├── right_view

│          │          │          ├── disp

│          │          │          ├── disp_high_acc

│          ├── spinach

│          ├── ......

Download

You can use the following links to download out PlantStereo dataset.

Baidu Netdisk link
Google Drive link

Usage

  • sample.py

To construct the dataset, you can run the code in sample.py in your terminal:

conda activate <your_anaconda_virtual_environment>
python sample.py --num 0

We can registrate the image and transformate the coordinate through function mech_zed_alignment():

def mech_zed_alignment(depth, mech_height, mech_width, zed_height, zed_width):
    ground_truth = np.zeros(shape=(zed_height, zed_width), dtype=float)
    for v in range(0, mech_height):
        for u in range(0, mech_width):
            i_mech = np.array([[u], [v], [1]], dtype=float)  # 3*1
            p_i_mech = np.dot(np.linalg.inv(K_MECH), i_mech * depth[v, u])  # 3*1
            p_i_zed = np.dot(R_MECH_ZED, p_i_mech) + T_MECH_ZED  # 3*1
            i_zed = np.dot(K_ZED_LEFT, p_i_zed) * (1 / p_i_zed[2])  # 3*1
            disparity = ZED_BASELINE * ZED_FOCAL_LENGTH * 1000 / p_i_zed[2]
            u_zed = i_zed[0]
            v_zed = i_zed[1]
            coor_u_zed = round(u_zed[0])
            coor_v_zed = round(v_zed[0])
            if coor_u_zed < zed_width and coor_v_zed < zed_height:
                ground_truth[coor_v_zed][coor_u_zed] = disparity
    return ground_truth
  • epipole_rectification.py

    After collecting the left, right and disparity images throuth sample.py, we can perform epipole rectification on left and right images through epipole_rectification.py:

    python epipole_rectification.py

Citation

If you use our PlantStereo dataset in your research, please cite this publication:

@misc{PlantStereo,
    title={PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction},
    author={Qingyu Wang, Baojian Ma, Wei Liu, Mingzhao Lou, Mingchuan Zhou, Huanyu Jiang and Yibin Ying},
    howpublished = {\url{https://github.com/wangqingyu985/PlantStereo}},
    year={2021}
}

Acknowledgements

This project is mainly based on:

zed-python-api

mecheye_python_interface

Contact

If you have any questions, please do not hesitate to contact us through E-mail or issue, we will reply as soon as possible.

[email protected] or [email protected]

Owner
Wang Qingyu
A second-year Ph.D. student in Zhejiang University
Wang Qingyu
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022