SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

Overview

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

PDF

Figure

Abstract

Explainable artificial intelligence has been gaining attention in the past few years. However, most existing methods are based on gradients or intermediate features, which are not directly involved in the decision-making process of the classifier. In this paper, we propose a slot attention-based classifier called SCOUTER for transparent yet accurate classification. Two major differences from other attention-based methods include: (a) SCOUTER's explanation is involved in the final confidence for each category, offering more intuitive interpretation, and (b) all the categories have their corresponding positive or negative explanation, which tells "why the image is of a certain category" or "why the image is not of a certain category." We design a new loss tailored for SCOUTER that controls the model's behavior to switch between positive and negative explanations, as well as the size of explanatory regions. Experimental results show that SCOUTER can give better visual explanations while keeping good accuracy on small and medium-sized datasets.

Model Structure

Structure Figure

SCOUTER is built on top of the recently-emerged slot attention, which offers an object-centric approach for image representation. Based on this approach, we propose an explainable slot attention (xSlot) module. The output from the xSlot module is directly used as the confidence values for each category and thus commonly used fully-connected (FC) layer-based classifiers are no longer necessary. The whole network, including the backbone, is trained with the SCOUTER loss, which provides control over the size of explanatory regions and switching between positive and negative explanations.

Usage

Enable distributed training (if desired)
python -m torch.distributed.launch --nproc_per_node=4 --use_env train.py --world_size 4

Imagenet

Training for Imagenet dataset (Base Model)
python train.py --dataset ImageNet --model resnest26d --batch_size 70 --epochs 20 \
--num_classes 10 --use_slot false \
--vis false --channel 2048 --freeze_layers 0 \
--dataset_dir ../data/imagenet/ILSVRC/Data/CLS-LOC/
Positive Scouter for Imagenet dataset
python train.py --dataset ImageNet --model resnest26d --batch_size 70 --epochs 20 \
--num_classes 10 --use_slot true --use_pre false --loss_status 1 --slots_per_class 1 \
--power 2 --to_k_layer 3 --lambda_value 1 --vis false --channel 2048 --freeze_layers 0 \
--dataset_dir ../data/imagenet/ILSVRC/Data/CLS-LOC/
Negative Scouter for Imagenet dataset
python train.py --dataset ImageNet --model resnest26d --batch_size 70 --epochs 20 \
--num_classes 10 --use_slot true --use_pre false --loss_status -1 --slots_per_class 1 \
--power 2 --to_k_layer 3 --lambda_value 1 --vis false --channel 2048 --freeze_layers 0 \
--dataset_dir ../data/imagenet/ILSVRC/Data/CLS-LOC/
Visualization of Positive Scouter for Imagenet dataset
python test.py --dataset ImageNet --model resnest26d --batch_size 70 --epochs 20 \
--num_classes 10 --use_slot true --use_pre false --loss_status 1 --slots_per_class 1 \
--power 2 --to_k_layer 3 --lambda_value 1 --vis true --channel 2048 --freeze_layers 0 \
--dataset_dir ../data/imagenet/ILSVRC/Data/CLS-LOC/
Visualization of Negative Scouter for Imagenet dataset
python test.py --dataset ImageNet --model resnest26d --batch_size 70 --epochs 20 \
--num_classes 10 --use_slot true --use_pre false --loss_status -1 --slots_per_class 1 \
--power 2 --to_k_layer 3 --lambda_value 1 --vis true --channel 2048 --freeze_layers 0 \
--dataset_dir ../data/imagenet/ILSVRC/Data/CLS-LOC/
Visualization using torchcam for Imagenet dataset
python torchcam_vis.py --dataset ImageNet --model resnest26d --batch_size 70 \
--num_classes 10 --grad true --use_pre true \
--dataset_dir ../data/imagenet/ILSVRC/Data/CLS-LOC/ \
--grad_min_level 0

MNIST Dataset

Pre-training for MNIST dataset
python train.py --dataset MNIST --model resnet18 --batch_size 64 --epochs 10 \
--num_classes 10 --use_slot false --vis false --aug false
Positive Scouter for MNIST dataset
python train.py --dataset MNIST --model resnet18 --batch_size 64 --epochs 10 \
--num_classes 10 --use_slot true --use_pre true --loss_status 1 --slots_per_class 1 \
--power 1 --to_k_layer 1 --lambda_value 1. --vis false --channel 512 --aug false
Negative Scouter for MNIST dataset
python train.py --dataset MNIST --model resnet18 --batch_size 64 --epochs 10 \
--num_classes 10 --use_slot true --use_pre false --loss_status -1 --slots_per_class 2 \
--power 2 --to_k_layer 1 --lambda_value 1.5 --vis false --channel 512 --aug false --freeze_layers 3
Visualization of Positive Scouter for MNIST dataset
python test.py --dataset MNIST --model resnet18 --batch_size 64 --epochs 10 \
--num_classes 10 --use_slot true --use_pre true --loss_status 1 --slots_per_class 1 \
--power 1 --to_k_layer 1 --lambda_value 1. --vis true --channel 512 --aug false
Visualization of Negative Scouter for MNIST dataset
python test.py --dataset MNIST --model resnet18 --batch_size 64 --epochs 10 \
--num_classes 10 --use_slot true --use_pre false --loss_status -1 --slots_per_class 2 \
--power 2 --to_k_layer 1 --lambda_value 1.5 --vis true --channel 512 --aug false --freeze_layers 3
Visualization using torchcam for MNIST dataset
python torchcam_vis.py --dataset MNIST --model resnet18 --batch_size 64 \
--num_classes 10 --grad true --use_pre true

Con-Text Dataset

Pre-training for ConText dataset
python train.py --dataset ConText --model resnest26d --batch_size 200 --epochs 100 \
--num_classes 30 --use_slot false --vis false \
--dataset_dir ../data/con-text/JPEGImages/
Positive Scouter for ConText dataset
python train.py --dataset ConText --model resnest26d --batch_size 200 --epochs 100 \
--num_classes 30 --use_slot true --use_pre true --loss_status 1 --slots_per_class 3 \
--power 2 --to_k_layer 3 --lambda_value .2 --vis false --channel 2048 \
--dataset_dir ../data/con-text/JPEGImages/
Negative Scouter for ConText dataset
python train.py --dataset ConText --model resnest26d --batch_size 200 --epochs 100 \
--num_classes 30 --use_slot true --use_pre true --loss_status -1 --slots_per_class 3 \
--power 2 --to_k_layer 3 --lambda_value 1. --vis false --channel 2048 \
--dataset_dir ../data/con-text/JPEGImages/
Visualization of Positive Scouter for ConText dataset
python test.py --dataset ConText --model resnest26d --batch_size 200 --epochs 100 \
--num_classes 30 --use_slot true --use_pre true --loss_status 1 --slots_per_class 3 \
--power 2 --to_k_layer 3 --lambda_value 1. --vis true --channel 2048 \
--dataset_dir ../data/con-text/JPEGImages/
Visualization of Negative Scouter for ConText dataset
python test.py --dataset ConText --model resnest26d --batch_size 200 --epochs 100 \
--num_classes 30 --use_slot true --use_pre true --loss_status -1 --slots_per_class 3 \
--power 2 --to_k_layer 3 --lambda_value 1. --vis true --channel 2048 \
--dataset_dir ../data/con-text/JPEGImages/
Visualization using torchcam for ConText dataset
python torchcam_vis.py --dataset ConText --model resnest26d --batch_size 200 \
--num_classes 30 --grad true --use_pre true \
--dataset_dir ../data/con-text/JPEGImages/

CUB-200 Dataset

Pre-training for CUB-200 dataset
python train.py --dataset CUB200 --model resnest50d --batch_size 64 --epochs 150 \
--num_classes 25 --use_slot false --vis false --channel 2048 \
--dataset_dir ../data/bird_200/CUB_200_2011/CUB_200_2011/
Positive Scouter for CUB-200 dataset
python train.py --dataset CUB200 --model resnest50d --batch_size 64 --epochs 150 \
--num_classes 25 --use_slot true --use_pre true --loss_status 1 --slots_per_class 5 \
--power 2 --to_k_layer 3 --lambda_value 10 --vis false --channel 2048 --freeze_layers 2 \
--dataset_dir ../data/bird_200/CUB_200_2011/CUB_200_2011/
Negative Scouter for CUB-200 dataset
python train.py --dataset CUB200 --model resnest50d --batch_size 64 --epochs 150 \
--num_classes 25 --use_slot true --use_pre true --loss_status -1 --slots_per_class 3 \
--power 2 --to_k_layer 3 --lambda_value 1. --vis false --channel 2048 --freeze_layers 2 \
--dataset_dir ../data/bird_200/CUB_200_2011/CUB_200_2011/
Visualization of Positive Scouter for CUB-200 dataset
python test.py --dataset CUB200 --model resnest50d --batch_size 64 --epochs 150 \
--num_classes 25 --use_slot true --use_pre true --loss_status 1 --slots_per_class 5 \
--power 2 --to_k_layer 3 --lambda_value 10 --vis true --channel 2048 --freeze_layers 2 \
--dataset_dir ../data/bird_200/CUB_200_2011/CUB_200_2011/
Visualization of Negative Scouter for CUB-200 dataset
python test.py --dataset CUB200 --model resnest50d --batch_size 64 --epochs 150 \
--num_classes 25 --use_slot true --use_pre true --loss_status -1 --slots_per_class 3 \
--power 2 --to_k_layer 3 --lambda_value 1. --vis true --channel 2048 --freeze_layers 2 \
--dataset_dir ../data/bird_200/CUB_200_2011/CUB_200_2011/
Visualization using torchcam for CUB-200 dataset
python torchcam_vis.py --dataset CUB200 --model resnest50d --batch_size 150 \
--num_classes 25 --grad true --use_pre true \
--dataset_dir ../data/bird_200/CUB_200_2011/CUB_200_2011/

Acknowledgements

This work was supported by Council for Science, Technology and Innovation (CSTI), cross-ministerial Strategic Innovation Promotion Program (SIP), "Innovative AI Hospital System" (Funding Agency: National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN)).

Publication

If you want to use this work, please consider citing the following paper.

@inproceedings{li2021scouter,
 author = {Liangzhi Li and Bowen Wang and Manisha Verma and Yuta Nakashima and Ryo Kawasaki and Hajime Nagahara},
 booktitle = {IEEE International Conference on Computer Vision (ICCV)},
 pages = {},
 title = {SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition},
 year = {2021}
}
Owner
Bowen Wang
kaldi-asr/kaldi is the official location of the Kaldi project.

Kaldi Speech Recognition Toolkit To build the toolkit: see ./INSTALL. These instructions are valid for UNIX systems including various flavors of Linux

Kaldi 12.3k Jan 05, 2023
Connect Aseprite to Blender for painting pixelart textures in real time

Pribambase Pribambase is a small tool that connects Aseprite and Blender, to allow painting with instant viewport feedback and all functionality of ex

117 Jan 03, 2023
Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper.

EnergyExpenditure Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper. Additional data for replicating this s

Patrick S 42 Oct 26, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
question‘s area recognition using image processing and regular expression

======================================== Paper-Question-recognition ======================================== question‘s area recognition using image p

Yuta Mizuki 7 Dec 27, 2021
Face Anonymizer - FaceAnonApp v1.0

Face Anonymizer - FaceAnonApp v1.0 Blur faces from image and video files in /data/files folder. Contents Repo of the source files for the FaceAnonApp.

6 Apr 18, 2022
A pkg stiching around view images(4-6cameras) to generate bird's eye view.

AVP-BEV-OPEN Please check our new work AVP_SLAM_SIM A pkg stiching around view images(4-6cameras) to generate bird's eye view! View Demo · Report Bug

Xinliang Zhong 37 Dec 01, 2022
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched

OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf # it's a scriptable c

jbarlow83 7.9k Jan 03, 2023
A bot that plays TFT using OCR. Keeps track of bench, board, items, and plays the user defined team comp.

NOTES: To ensure best results, make sure you are running this on a computer that has decent specs. 1920x1080 fullscreen is required in League, game mu

francis 125 Dec 30, 2022
Deep learning based page layout analysis

Deep Learning Based Page Layout Analyze This is a Python implementaion of page layout analyze tool. The goal of page layout analyze is to segment page

186 Dec 29, 2022
Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:

RaVAEn The RaVÆn system We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variationa

SpaceML 35 Jan 05, 2023
基于Paddle框架的PSENet复现

PSENet-Paddle 基于Paddle框架的PSENet复现 本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 AIStudio链接 参考项目: whai362-PSENet 环境配置 本项目

QuanHao Guo 4 Apr 24, 2022
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention

87 Dec 26, 2022
Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, rastreia padrões de gestos em vez de um mouse físico.

mouserController Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, r

Vinícius Azevedo 6 Jun 28, 2022
The code of "Mask TextSpotter: An End-to-End Trainable Neural Network for Spotting Text with Arbitrary Shapes"

Mask TextSpotter A Pytorch implementation of Mask TextSpotter along with its extension can be find here Introduction This is the official implementati

Pengyuan Lyu 261 Nov 21, 2022
Code for CVPR 2022 paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

Bailando Code for CVPR 2022 (oral) paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory" [Paper] | [Project Page] | [Vi

Li Siyao 237 Dec 29, 2022
Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz.

opencv_yuz_bulma Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz. Bilgisarın kendi kamerasını kullanmak için;

Ahmet Haydar Ornek 6 Apr 16, 2022
Deskew is a command line tool for deskewing scanned text documents. It uses Hough transform to detect "text lines" in the image. As an output, you get an image rotated so that the lines are horizontal.

Deskew by Marek Mauder https://galfar.vevb.net/deskew https://github.com/galfar/deskew v1.30 2019-06-07 Overview Deskew is a command line tool for des

Marek Mauder 127 Dec 03, 2022
Learning Camera Localization via Dense Scene Matching, CVPR2021

This repository contains code of our CVPR 2021 paper - "Learning Camera Localization via Dense Scene Matching" by Shitao Tang, Chengzhou Tang, Rui Hua

tangshitao 65 Dec 01, 2022