SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

Overview

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

A novel graph neural network (GNN) based model (termed SlideGraph+) to predict HER2 status directly from whole-slide images of routine Haematoxylin and Eosin (H&E) slides. This pipeline generates node-level and WSI-level predictions by using a graph representation to capture the biological geometric structure of the cellular architecture at the entire WSI level. A pre-processing function is used to do adaptive spatial agglomerative clustering to group spatially neighbouring regions with high degree of feature similarity and construct a WSI-level graph based on clusters.

Data

The repository can be used for constructing WSI-level graphs, training SlideGraph and predicting HER2 status on WSI-level graphs. The training data used in this study was downloaded from TCGA using https://portal.gdc.cancer.gov/projects/TCGA-BRCA.

Workflow of predicting HER2 status from H&E images

workflow1

GNN network architecture

GCN_architecture5

Environment

Please refer to requirements.txt

Repository Structure

Below are the main executable scripts in the repository:

features_to_graph.py: Construct WSI-level graph

platt.py: Normalise classifier output scores to a probability value

GNN_pr.py: Graph neural network architecture

train.py: Main training and inference script

Training the classification model

Data format

For training, each WSI has to have a WSI-level graph. In order to do that, it is required to generate x,y coordinates, feature vectors for local regions in the WSIs. x,y coordinates can be cental points of patches, centroid of nuclei and so on. Feature varies. It can be nuclear composition features (e.g.,counts of different types of nuclei in the patch), morphological features, receptor expression features, deep features (or neuralfeature embdeddings from a pre-trained neural network) and so on.

Each WSI should be fitted with one npz file which contains three arrays: x_coordinate, y_coordinate and corresponding region-level feature vector. Please refer to feature.npz in the example folder.

Graph construction

After npz files are ready, run features_to_graph.py to group spatially neighbouring regions with high degree of feature similarity and construct a graph based on clusters for each WSI.

  • Set path to the feature directories (feature_path)
  • Set path where graphs will be saved (output_path)
  • Modify hyperparameters, including similarity parameters (lambda_d, lambda_f), hierachical clustering distance threshold (lamda_h) and node connection distance threshold (distance_thres)

Training

After getting graphs of all WSIs,

  • Set path to the graph directories (bdir) in train.py
  • Set path to the clinical data (clin_path) in train.py
  • Modify hyperparameters, including learning_rate, weight_decay in train.py

Train the classification model and do 5-fold stratified cross validation using

python train.py

In each fold, top 10 best models (on validation dataset) and the model from the last epoch are tested on the testing dataset. Averaged classification performance among 5 folds are presented in the end.

Heatmap of node-level prediction scores

heatmap_final

Heatmaps of node-level prediction scores and zoomed-in regions which have different levels of HER2 prediction score. Boundary colour of each zoomed-in region represents its contribution to HER2 positivity (prediction score).

License

The source code SlideGraph as hosted on GitHub is released under the GNU General Public License (Version 3).

The full text of the licence is included in LICENSE.md.

This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Fadi Boutros 40 Dec 22, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.

Vehicle Detection Video demo Overview Vehicle detection using these machine learning and computer vision techniques. Linear SVM HOG(Histogram of Orien

hata 1.1k Dec 18, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022