Playable Video Generation

Overview

Playable Video Generation




Playable Video Generation
Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci

Paper: ArXiv
Supplementary: Website
Demo: Try it Live

Abstract: This paper introduces the unsupervised learning problem of playable video generation (PVG). In PVG, we aim at allowing a user to control the generated video by selecting a discrete action at every time step as when playing a video game. The difficulty of the task lies both in learning semantically consistent actions and in generating realistic videos conditioned on the user input. We propose a novel framework for PVG that is trained in a self-supervised manner on a large dataset of unlabelled videos. We employ an encoder-decoder architecture where the predicted action labels act as bottleneck. The network is constrained to learn a rich action space using, as main driving loss, a reconstruction loss on the generated video. We demonstrate the effectiveness of the proposed approach on several datasets with wide environment variety.

Overview



Figure 1. Illustration of the proposed CADDY model for playable video generation.


Given a set of completely unlabeled videos, we jointly learn a set of discrete actions and a video generation model conditioned on the learned actions. At test time, the user can control the generated video on-the-fly providing action labels as if he or she was playing a videogame. We name our method CADDY. Our architecture for unsupervised playable video generation is composed by several components. An encoder E extracts frame representations from the input sequence. A temporal model estimates the successive states using a recurrent dynamics network R and an action network A which predicts the action label corresponding to the current action performed in the input sequence. Finally, a decoder D reconstructs the input frames. The model is trained using reconstruction as the main driving loss.

Requirements

We recommend the use of Linux and of one or more CUDA compatible GPUs. We provide both a Conda environment and a Dockerfile to configure the required libraries.

Conda

The environment can be installed and activated with:

conda env create -f env.yml

conda activate video-generation

Docker

Use the Dockerfile to build the docker image:

docker build -t video-generation:1.0 .

Run the docker image mounting the root directory to /video-generation in the docker container:

docker run -it --gpus all --ipc=host -v /path/to/directory/video-generation:/video-generation video-generation:1.0 /bin/bash

Preparing Datasets

BAIR

Coming soon

Atari Breakout

Download the breakout_160_ours.tar.gz archive from Google Drive and extract it under the data folder.

Tennis

The Tennis dataset is automatically acquired from Youtube by running

./get_tennis_dataset.sh

This requires an installation of youtube-dl (Download). Please run youtube-dl -U to update the utility to the latest version. The dataset will be created at data/tennis_v4_256_ours.

Custom Datasets

Custom datasets can be created from a user-provided folder containing plain videos. Acquired video frames are sampled at the specified resolution and framerate. ffmpeg is used for the extraction and supports multiple input formats. By default only mp4 files are acquired.

python -m dataset.acquisition.convert_video_directory --video_directory --output_directory --target_size [--fps --video_extension --processes ]

As an example the following command transforms all mp4 videos in the tmp/my_videos directory into a 256x256px dataset sampled at 10fps and saves it in the data/my_videos folder python -m dataset.acquisition.convert_video_directory --video_directory tmp/my_videos --output_directory data/my_videos --target_size 256 256 --fps 10

Using Pretrained Models

Pretrained models in .pth.tar format are available for all the datasets and can be downloaded at the following link: Google Drive

Please place each directory under the checkpoints folder. Training and inference scripts automatically make use of the latest.pth.tar checkpoint when present in the checkpoints subfolder corresponding to the configuration in use.

Playing

When a latest.pth.tar checkpoint is present under the checkpoints folder corresponding to the current configuration, the model can be interactively used to generate videos with the following commands:

  • Bair: python play.py --config configs/01_bair.yaml

  • Breakout: python play.py configs/breakout/02_breakout.yaml

  • Tennis: python play.py --config configs/03_tennis.yaml

A full screen window will appear and actions can be provided using number keys in the range [1, actions_count]. Number key 0 resets the generation process.

The inference process is lightweight and can be executed even in browser as in our Live Demo.

Training

The models can be trained with the following commands:

python train.py --config configs/

The training process generates multiple files under the results and checkpoint directories a sub directory with the name corresponding to the one specified in the configuration file. In particular, the folder under the results directory will contain an images folder showing qualitative results obtained during training. The checkpoints subfolder will contain regularly saved checkpoints and the latest.pth.tar checkpoint representing the latest model parameters.

The training can be completely monitored through Weights and Biases by running before execution of the training command: wandb init

Training the model in full resolution on our datasets required the following GPU resources:

  • BAIR: 4x2080Ti 44GB
  • Breakout: 1x2080Ti 11GB
  • Tennis: 2x2080 16GB

Lower resolution versions of the model can be trained with a single 8GB GPU.

Evaluation

Evaluation requires two steps. First, an evaluation dataset must be built. Second, evaluation is carried out on the evaluation dataset. To build the evaluation dataset please issue:

python build_evaluation_dataset.py --config configs/

The command creates a reconstruction of the test portion of the dataset under the results//evaluation_dataset directory. To run evaluation issue:

python evaluate_dataset.py --config configs/evaluation/configs/

Evaluation results are saved under the evaluation_results directory the folder specified in the configuration file with the name data.yml.

Owner
Willi Menapace
Hi, I'm Willi Menapace, Ph.D Student and passionate deep learning practitioner. Here you can find some of the projects I am allowed to publish.
Willi Menapace
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 04, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022