A small timeseries transformation API built on Flask and Pandas

Overview

#Mcflyin

###A timeseries transformation API built on Pandas and Flask

This is a small demo of an API to do timeseries transformations built on Flask and Pandas.

Concept

The idea is that you can make a POST request to the API with a simple list/array of timestamps, from any language, and get back some interesting transformations of that data.

Why?

Partly to show how straightforward it is to build such a thing. Python is great because it has very powerful, intuitive, quick-to-learn tools for both building web applications and doing data analysis/statistics.

That puts Python in kind of a unique position: powerful web tools, powerful scientific/numerical/statistical data tools. This API is a very simple example of how you can take advantage of both. Go read the source code- it's short and easy to grok. Bug fixes and pull requests welcome.

Getting Started

First we need to find some data. We're going to use some data that Wes McKinney provided in a recent blog post, with some statistics on Python posts on Stack Overflow. This is something of a contrived example: I'm manipulating the data in Python, sending to a Python backend, and then getting a response to manipulate in Python. Just know that all you need is an array of timestamp strings, no matter your language.

import pandas as pd

data = pd.read_csv('AllPandas.csv')
data = data['CreationDate'].tolist()

A simple array of timestamps:

>>>data[:10]
['2011-04-01 14:50:44',
 '2012-01-18 19:41:27',
 '2012-01-23 03:21:00',
 '2012-01-24 17:59:53',
 '2012-03-04 16:58:45',
 '2012-03-09 22:36:52',
 '2012-03-10 15:35:26',
 '2012-03-18 12:53:06',
 '2012-03-30 13:58:29',
 '2012-04-04 23:17:23']

With the McFlyin application running on localhost, lets make a request to resample the data on an daily basis, to get the number of posts per day:

import requests
import json

freq = {'D': 'Daily'}
sends = {'freq': json.dumps(freq), 'data': json.dumps(data)}
r = requests.post('http://127.0.0.1:5000/resample', data=sends)
response = r.json

The response is simple JSON:

{'Monthly': {'data': [1.0, 2.0, 1.0, 1.0,...
             'time': ['2011-03-31T00:00:00', '2011-04-30T00:00:00', '2011-05-31T00:00:00', '2011-06-30T00:00:00', '2011-07-31T00:00:00',...

Here's the distribution of daily questions on Stack Overflow for Pandas (monthly probably would have been a little more informative):

Daily

Let's call Mcflyin for a rolling sum on a seven-day window. It will resample to the given freq, then apply the window to the result:

freq = {'D': 'Weekly Rolling'}
sends = {'freq': json.dumps(freq), 'data': json.dumps(data), 'window': 7}
r = requests.post('http://127.0.0.1:5000/rolling_sum', data=sends)
response = r.json

Rolling

Let's look at the total questions asked by day:

sends = {'data': json.dumps(data), 'how': json.dumps('sum')}
r = requests.post('http://127.0.0.1:5000/daily', data=sends)
response = r.json

dailysum

and daily means:

sends = {'data': json.dumps(data), 'how': json.dumps('mean')}
r = requests.post('http://127.0.0.1:5000/daily', data=sends)
response = r.json

dailymean

The same for hourly:

sends = {'data': json.dumps(data), 'how': json.dumps('sum')}
r = requests.post('http://127.0.0.1:5000/hourly', data=sends)
response = r.json

dailymean

Finally, we can look at hourly by day-of-week:

sends = {'data': json.dumps(data), 'how': json.dumps('sum')}
r = requests.post('http://127.0.0.1:5000/daily_hours', data=sends)
response = r.json

hourdow

Live demo here

Dependencies

Pandas, Numpy, Requests, Flask

How did you make those colorful graphs?

Vincent and Bearcart

Status

Lots of stuff that could be better- error handling on the requests, probably better handling of weird timestamps, etc. This is just a small demo of how powerful Python can be for building a statistics backend with relatively few lines of code.

If I want to write a front-end in a different language, can I put it in the examples folder?

Yes! PR's welcome.

Owner
Rob Story
Rob Story
Scientific measurement library for instruments, experiments, and live-plotting

PyMeasure scientific package PyMeasure makes scientific measurements easy to set up and run. The package contains a repository of instrument classes a

PyMeasure 445 Jan 04, 2023
A tool for creating Toontown-style nametags in Panda3D

Toontown-Nametag Toontown-Nametag is a tool for creating Toontown Online/Toontown Rewritten-style nametags in Panda3D. It contains a function, createN

BoggoTV 2 Dec 23, 2021
A command line tool for visualizing CSV/spreadsheet-like data

PerfPlotter Read data from CSV files using pandas and generate interactive plots using bokeh, which can then be embedded into HTML pages and served by

Gino Mempin 0 Jun 25, 2022
649 Pokémon palettes as CSVs, with a Python lib to turn names/IDs into palettes, or MatPlotLib compatible ListedColormaps.

PokePalette 649 Pokémon, broken down into CSVs of their RGB colour palettes. Complete with a Python library to convert names or Pokédex IDs into eithe

11 Dec 05, 2022
Lightweight, extensible data validation library for Python

Cerberus Cerberus is a lightweight and extensible data validation library for Python. v = Validator({'name': {'type': 'string'}}) v.validate({

eve 2.9k Dec 27, 2022
a simple REPL display lib for circuitpython

Circuitpython-termio-lib a simple REPL display lib for circuitpython Fonctions cls clear terminal screen and set cursor on top left : coords 0,0 usage

BeBoXoS 1 Nov 17, 2021
Write python locally, execute SQL in your data warehouse

RasgoQL Write python locally, execute SQL in your data warehouse ≪ Read the Docs · Join Our Slack » RasgoQL is a Python package that enables you to ea

Rasgo 265 Nov 21, 2022
Draw interactive NetworkX graphs with Altair

nx_altair Draw NetworkX graphs with Altair nx_altair offers a similar draw API to NetworkX but returns Altair Charts instead. If you'd like to contrib

Zachary Sailer 206 Dec 12, 2022
A tool for creating SVG timelines from simple JSON input.

A tool for creating SVG timelines from simple JSON input.

Jason Reisman 432 Dec 30, 2022
Analysis and plotting for motor/prop/ESC characterization, thrust vs RPM and torque vs thrust

esc_test This is a Python package used to plot and analyze data collected for the purpose of characterizing a particular propeller, motor, and ESC con

Alex Spitzer 1 Dec 28, 2021
PanGraphViewer -- show panenome graph in an easy way

PanGraphViewer -- show panenome graph in an easy way Table of Contents Versions and dependences Desktop-based panGraphViewer Library installation for

16 Dec 17, 2022
A python-generated website for visualizing the novel coronavirus (COVID-19) data for Greece.

COVID-19-Greece A python-generated website for visualizing the novel coronavirus (COVID-19) data for Greece. Data sources Data provided by Johns Hopki

Isabelle Viktoria Maciohsek 23 Jan 03, 2023
https://there.oughta.be/a/macro-keyboard

inkkeys Details and instructions can be found on https://there.oughta.be/a/macro-keyboard In contrast to most of my other projects, I decided to put t

Sebastian Staacks 209 Dec 21, 2022
A tool to plot and execute Rossmos's Formula, that helps to catch serial criminals using mathematics

Rossmo Plotter A tool to plot and execute Rossmos's Formula using python, that helps to catch serial criminals using mathematics Author: Amlan Saha Ku

Amlan Saha Kundu 3 Aug 29, 2022
Bcc2telegraf: An integration that sends ebpf-based bcc histogram metrics to telegraf daemon

bcc2telegraf bcc2telegraf is an integration that sends ebpf-based bcc histogram

Peter Bobrov 2 Feb 17, 2022
Easily configurable, chart dashboards from any arbitrary API endpoint. JSON config only

Flask JSONDash Easily configurable, chart dashboards from any arbitrary API endpoint. JSON config only. Ready to go. This project is a flask blueprint

Chris Tabor 3.3k Dec 31, 2022
A declarative (epi)genomics visualization library for Python

gos is a declarative (epi)genomics visualization library for Python. It is built on top of the Gosling JSON specification, providing a simplified interface for authoring interactive genomic visualiza

Gosling 107 Dec 14, 2022
Epagneul is a tool to visualize and investigate windows event logs

epagneul Epagneul is a tool to visualize and investigate windows event logs. Dep

jurelou 190 Dec 13, 2022
A napari plugin for visualising and interacting with electron cryotomograms.

napari-tomoslice A napari plugin for visualising and interacting with electron cryotomograms. Installation You can install napari-tomoslice via pip: p

3 Jan 03, 2023
Visualization Data Drug in thailand during 2014 to 2020

Visualization Data Drug in thailand during 2014 to 2020 Data sorce from ข้อมูลเปิดภาครัฐ สำนักงาน ป.ป.ส Inttroducing program Using tkinter module for

Narongkorn 1 Jan 05, 2022