Underwater industrial application yolov5m6

Overview

underwater-industrial-application-yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Professional Contest and ranking 13 out of 31 teams in finals.

和鲸社区Kesci 水下光学目标检测产业应用赛项

环境:

mmdetection

+ 操作系统:Ubuntu 18.04.2
+ GPU:1块2080Ti
+ Python:Python 3.7.7
+ NVIDIA依赖:
    - NVCC: Cuda compilation tools, release 10.1, V10.1.243
    - CuDNN 7.6.5
+ 深度学习框架:
    - PyTorch: 1.8.1
    - TorchVision: 0.9.1
    - OpenCV
    - MMCV
    - MMDetection(注意data clean 的版本不同)

yolov5

训练环境:
	+ 操作系统:Ubuntu 18.04.2
	+ GPU:1块2080Ti
	+ Python:Python 3.7.7
测试环境:
	 NVIDIA Jetson AGX Xavier


# pip install -r requirements.txt

# base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow
PyYAML>=5.3.1
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0

# logging -------------------------------------
tensorboard>=2.4.1
# wandb

# plotting ------------------------------------
seaborn>=0.11.0
pandas

# export --------------------------------------
# coremltools>=4.1
# onnx>=1.9.0
# scikit-learn==0.19.2  # for coreml quantization
# tensorflow==2.4.1  # for TFLite export

# extras --------------------------------------
# Cython  # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
# pycocotools>=2.0  # COCO mAP
# albumentations>=1.0.3
thop  # FLOPs computation

第一大步:@数据清理

文件说明:data_clean_Code用于数据清理

data_clean_Code/yangtiming-underwater-master ->为湛江赛拿第20名方案
data_clean_Code/underwater-detection-master  ->为triks团队湛江赛方案

使用说明

1. (这一步用我的yangtiming-underwater-master替代原有的cascade_rcnn_x101_64x4d_fpn_dcn_e15 )【原因精度更高A榜0.562】

模型采用 cascade_rcnn_x101_64x4d_fpn_dcn_e15  
+ Backbone:
    + ResNeXt101-64x4d
+ Neck:
    + FPN
+ DCN
+ Global context(GC)
+ MS [(4096, 600), (4096, 1000)]
+ RandomRotate90°
+ 15epochs + step:[11, 13]  
+ A榜:0.55040585 
    + 注:不是所有数据

2. 基于1训练好的模型对训练数据进行清洗(tools/data_process/data_clean.py)

+ 1. 如果某张图片上所有预测框的confidence没有一个是大于0.9, 那么去掉该图片(即看不清的图片)
+ 2. 修正错误标注
    + 1. 先过滤掉confidence<0.1的predict boxes, 然后同GT boxes求iou
    + 2. 如果predict box同GT的最大iou大于0.6,但类别不一致, 那么就修正该gt box的类别
trainall.json (与bbox1)修后的到   trainall-revised.json

3. 基于2修正后的数据进行训练->(基于2修正后的到 trainall-revised.json 修正采用cascade_rcnn_r50_rfp_sac后的到-> bbox3

模型采用cascade_rcnn_r50_rfp_sac
+ Backbone:
+ ResNet50
+ Neck:
RFP-SAC
+ GC + MS + RandomRotate90°
+ cascade_iou调整为:(0.55, 0.65, 0.75)
+ A榜: 0.56339531
+ 注:所有数据

4. 基于3训练好的模型进一步清洗数据.

->  trainall-revised-v3.json(与bbox3) 	进一步清洗数据 -> trainall-revised-v4.json)
+ 模型同3: 
+ A榜:0.56945031
    + 注:所有数据
在验证集上面测试精度:1. 执行完mAP0.5:0.95=0.547 4. 执行完mAP0.5:0.95 = 0.560

第二大步:@数据清理完毕后,改用yolov5 (code/yolov5_V5_chuli_focal_loss_attention)

使用背景介绍:
使用模型为yolov5m6系列,迭代tricks的时候,采取用--img 640 进行迭代

最优模型:

最终在yolov5m6上面的精度为:mAP0.5:0.95= 0.5374,agx速度0.2s每张
最好模型:
1.yolov5m6
2.数据清洗
2.attention模块:senet
3.hsv_h,hsv_s,hsv_v=0
4.focal_loss

使用的tricks如下:(按照时间顺序)

1.按照第一大步的数据清洗:由原来的mAP0.5:0.95= 0.465->0.4880
2.yolov5当中的hsv_h,hsv_s,hsv_v均设为0,mAP0.5:0.95= 0.4880 ->0.4940
3.在loss.py当中加入focal_loss损失函数(157行,172行),mAP0.5:0.95= 0.4940 ->0.4977
4.更改原有yolov5的c3层改为senet(attention模块),mAP0.5:0.95= 0.4977 -> 0.50069

以上按照

python train.py  --weights weights/yolov5m6.pt --cfg models/hub/yolov5m6-senet.yaml --data data/underwater.yaml  --hyp data/hyps/hyp.scratch-p6.yaml --epochs 100 --batch-size 25 --img 640

最终要提交的时候,按照

python train.py  --weights weights/yolov5m6.pt --cfg models/hub/yolov5m6-senet.yaml --data data/underwater.yaml  --hyp data/hyps/hyp.scratch-p6.yaml --epochs 250 --batch-size 4 --img 1280 --multi-scale

【注意:multi-scale大小可以在train.py文件夹下面更改】

测试

python3 val_tm_txt_csv.py --data  /data/underwater.yaml   --weights weights/best_05374.pt --img 1280 --save-txt --save-conf --half

【--half能提升速度(fp16),精度比fp32更高】

################

若要测试mAP,可以用 https://github.com/rafaelpadilla/review_object_detection_metrics.git

以下为比赛文档说明

若有权限问题,则执行前 chmod +x main_test.sh

1. 将测试集的图片放在本文件夹当中名字为test
2.最终结果将放在answer当中(执行后自动生成)
3.code文件夹为全部代码,以及包含训练权重
4.执行main_test.sh开始运行



(*)Q:何时开始计时?(注意:在执行main_test.sh之前命令窗口拉长,否则计时无法看到进度条)
当执行 python3 ./val_tm_txt_csv.py 时,看见如下界面表示计时开始
##                 Class     Images     Labels          P          R     [email protected] [email protected]:.95:   0%|          | 0/xxx [00:00

reference

+yolov5

+yangtiming/underwater-mmdetection

+team-tricks

An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

HCSC: Hierarchical Contrastive Selective Coding This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive

YUANFAN GUO 111 Dec 20, 2022
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022