Machine learning notebooks in different subjects optimized to run in google collaboratory

Overview

Notebooks

Name Description Category Link
Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the code is based on this implementation. GAN
One Place This notebook shows how to train, test then deploy models in the browser directly from one notebook. We use a simple XOR example to prove this simple concept. Deployment
TPU vs GPU Google recently allowed training on TPUs for free on colab. This notebook explains how to enable TPU training. Also, it reports some benchmarks using mnist dataset by comparing TPU and GPU performance. TPU
Keras Custom Data Generator This notebook shows to create a custom data genertor in keras. Data Generatation
Eager Execution (1) As we know that TenosrFlow works with static graphs. So, first you have to create the graph then execute it later. This makes debugging a bit complicated. With Eager Execution you can now evalute operations directly without creating a session. Dynamic Graphs
Eager Execution (2) In this notebook I explain different concepts in eager execution. I go over variables, ops, gradients, custom gradients, callbacks, metrics and creating models with tf.keras and saving/restoring them. Dynamic Graphs
Sketcher Create a simple app to recognize 100 drawings from the quickdraw dataset. A simple CNN model is created and served to deoploy in the browser to create a sketch recognizer app. Deployment
QuickDraw10 In this notebook we provide QuickDraw10 as an alternative for MNIST. A script is provided to download and load a preprocessed dataset for 10 classes with training and testing split. Also, a simple CNN model is implemented for training and testing. Data Preperation
Autoencoders Autoencoders consists of two structures: the encoder and the decoder. The encoder network downsamples the data into lower dimensions and the decoder network reconstructs the original data from the lower dimension representation. The lower dimension representation is usually called latent space representation. Auto-encoder
Weight Transfer In this tutorial we explain how to transfer weights from a static graph model built with TensorFlow to a dynamic graph built with Keras. We will first train a model using Tensorflow then we will create the same model in keras and transfer the trained weights between the two models. Weights Save and Load
BigGan (1) Create some cool gifs by interpolation in the latent space of the BigGan model. The model is imported from tensorflow hub. GAN
BigGan (2) In this notebook I give a basic introduction to bigGans. I also, how to interpolate between z-vector values. Moreover, I show the results of multiple experiments I made in the latent space of BigGans. GAN
Mask R-CNN In this notebook a pretrained Mask R-CNN model is used to predict the bounding box and the segmentation mask of objects. I used this notebook to create the dataset for training the pix2pix model. Segmentation
QuickDraw Strokes A notebook exploring the drawing data of quickdraw. I also illustrate how to make a cool animation of the drawing process in colab. Data Preperation
U-Net The U-Net model is a simple fully convolutional neural network that is used for binary segmentation i.e foreground and background pixel-wise classification. In this notebook we use it to segment cats and dogs from arbitrary images. Segmentation
Localizer A simple CNN with a regression branch to predict bounding box parameters. The model is trained on a dataset of dogs and cats with bounding box annotations around the head of the pets. Object Localization
Classification and Localization We create a simple CNN with two branches for classification and locazliation of cats and dogs. Classification, Localization
Transfer Learning A notebook about using Mobilenet for transfer learning in TensorFlow. The model is very fast and achieves 97% validation accuracy on a binary classification dataset. Transfer Learning
Hand Detection In this task we want to localize the right and left hands for each person that exists in a single frame. It acheives around 0.85 IoU. Detection
Face Detection In this task we used a simple version of SSD for face detection. The model was trained on less than 3K images using TensorFlow with eager execution Detection
TensorFlow 2.0 In this task we use the brand new TF 2.0 with default eager execution. We explore, tensors, gradients, dataset and many more. Platform
SC-FEGAN In this notebook, you can play directly with the SC-FEGAN for face-editting directly in the browser. GAN
Swift for TensorFlow Swift for TensorFlow is a next-generation platform for machine learning that incorporates differentiable programming. In this notebook a go over its basics and also how to create a simple NN and CNN. Platform
GCN Ever asked yourself how to use convolution networks for non Euclidean data for instance graphs ? GCNs are becoming increasingly popular to solve such problems. I used Deep GCNs to classify spammers & non-spammers. Platform
Owner
Zaid Alyafeai
PhD student
Zaid Alyafeai
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL 👋 👋 👋 [Arxiv] [Google Drive][B

551 Dec 31, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

International Business Machines 168 Dec 29, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022