Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

Overview

Anomaly-Detection-Based-on-Hierarchical-Clustering-of-Mobile-Robot-Data

1. Introduction

This report is present an approach to detect anomaly of mobile robot's current and vibration data. The main idea is examine all data, separate them into two cluster as normal and anomaly and then using these clustering results figure out the merged anomaly score for each data sample. For this purpose, both of current and vibration data are cluster by using Hierarchical clustering algorithm. Before the clustering there are several preprocessing step that are windowing, feature extraction, dynamic time warping and min-max normalization.

You can access our paper here.

2. Interested Data

There are two different types of data that are coming from mobile robots sensors as current and vibration data. Both of them are produce at same frequency but they have different characteristic. Although the current data is numeric data, the vibration data is time series data. So, current data has a single value per each data packet but vibration data has much more value per each data packet.

Current Data Sample Vibration Data Sample

3. Proposed Method

There are two different method are proposed to detect anomaly on data. They have common step as windowing. And also they have some other different steps like feature extraction, normalization and dynamic time warping. These all are about preprocessing steps. After the preprocessing steps data is clustering into two subset by using hierarchical clustering as normal and anomaly. The anomaly scores of each data sample are produces as a result of clustering. And then, the results of two method are collect and anomaly scores are merge for each same data sample. While merging anomaly score, the mean of them are take. Given two method is perform separately using both current and vibration data. Proposed method is shown as below.

Rest of here, method 1 is represent a method which is use feature extraction and method 2 is also represent a method which is use DTW. Remember that both of these methods have also common steps.

3.1 Preprocessing Steps

A. Windowing
In this process, the data are parsed into subsets named as window with same size. For the extract of features of data, the data must be a time series data. In this way, the data are converted time series data. In this project, window size is 3. This step is implement for both two methods. Sample windowing process output is shown as below:

B. Feature Extraction
The features are extracted separately for each window. There are nine different feature as given below:

C. Dynamic Time Warping
In method 2, DTW is used for calculate similarity instead of Euclidean distance. After the windowing process, the data was converted time series data. So now, it is possible to use DTW on data.

Feature Extraction Dynamic Time Warping

D. Min-Max Normalization
Min-max normalization is one of the most common ways to normalize data. For every feature, the minimum value of that feature gets transformed into a 0, the maximum value gets transformed into a 1, and every other value gets transformed into a decimal between 0 and 1. Min-max normalization is executed on features that extracted from window. This step is implement only for method 1.

3.2 Hierarchical Clustering

This clustering technique is divided into two types as agglomerative and divisive. In this method, agglomerative approach is used. At this step, preprocessing steps is already done for method 1 and method 2 and the windows are ready to clustering. These windows are put into hierarchical algorithm to find clusters. As a result, the clusters which windows are belong to are found. They are used for calculate the anomaly score for whole data. This step is implemented for both two methods. And, the dendrogram which is represent the clustering result is produce.

3.3 Find Anomaly Score

The anomaly score is calculated separately from result of hierarchical clustering of both method 1 and method 2. The hierarchical clustering algorithm is produce clusters for each window. With use these clusters, the anomaly score is calculated for each cluster as given below (C: interested cluster, #All window: number of all window, #C window: number of window that belong to cluster C): C_anomaly=(#All Window - #C Window)/(#All Window)
< After the calculation of anomaly score for each method, the merged anomaly score is generate from mean of them. The formula is as follows for generate merged score: C_(merged anomaly score)=(C_(anomaly of method1)+ C_(anomaly of method2))/2
The anomaly score which is higher mean it is highly possible to be anomaly.

4. Experiments

An anomaly score is located right-top of figure. Different clusters are shown with different color.

Current Data Results

Feature Extracted Clustering Anomaly Score DTW Clustering Anoamly Score
Merged Anomaly Score

Vibration Data Results

Feature Extracted Clustering Anomaly Score DTW Clustering Anoamly Score
Merged Anomaly Score

Owner
Zekeriyya Demirci
Research Assistant at Eskişehir Osmangazi University , Contributor of VALU3S
Zekeriyya Demirci
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022