PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

Overview

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra

The purpose of this project is to demonstrate a structured streaming pipeline with Apache Spark. The process consists of given steps:

  1. Installation Process
  2. Prepare a robotic simulation environment to generate data to feed into the Kafka.
  3. Prepare Kafka and Zookeeper environment to store discrete data.
  4. Prepare Cassandra environment to store analyzed data.
  5. Prepare Apache Spark structured streaming pipeline, integrate with Kafka and Cassandra.
  6. Result

0. Installation Processes

You are able to install all required components to realize this project using the given steps.

Installation of ROS and Turtlebot3

We won't address the whole installation process of ROS and Turtlebot3 but you can access all required info from ROS & Turtlebot3 Installation.

After all installations are completed, you can demo our robotic environment using the given commands:

roslaunch turtlebot3_gazebo turtlebot3_world.launch

You should see a view like the one given below.

Installation of Kafka and Zookeeper

We won't address the whole installation process of Kafka and Zookeeper but you can access all required info from Kafka & Zookeeper Installation.

After all installations are completed, you can demo Kafka using the given commands:

# Change your path to Kafka folder and then run 
bin/zookeeper-server-start.sh config/zookeeper.properties

# Open second terminal and then run
bin/kafka-server-start.sh config/server.properties

# Create Kafka "demo" topic
bin/kafka-topics.sh --create --topic demo --partitions 1 --replication-factor 1 -bootstrap-server localhost:9092

Once you create "demo" topic, you can run kafka-demo/producer.py and kafka-demo/consumer.py respectively to check your setup.

If you haven't installed kafka-python, use the given command and then run given files.

pip install kafka-python
  • producer.py
import time,json,random
from datetime import datetime
from data_generator import generate_message
from kafka import KafkaProducer

def serializer(message):
    return json.dumps(message).encode("utf-8")
    
producer = KafkaProducer(
    bootstrap_servers=["localhost:9092"],
    value_serializer=serializer
)

if __name__=="__main__":
    while True:
        dummy_messages=generate_message()
        print(f"Producing message {datetime.now()} | Message = {str(dummy_messages)}")
        producer.send("demo",dummy_messages)
        time.sleep(2)
  • consumer.py
import json
from kafka import KafkaConsumer

if __name__=="__main__":
    consumer=KafkaConsumer(
        "demo",
        bootstrap_servers="localhost:9092",
        auto_offset_reset="latest"    )

    for msg in consumer:
        print(json.loads(msg.value))

You should see a view like the one given below after run the commands:

python3 producer.py
python3 consumer.py

Installation of Cassandra

We won't address the whole installation process of Cassandra but you can access all required info from Cassandra Installation.

After all installations are completed, you can demo Cassandra using cqlsh. You can check this link.

Installation of Apache Spark

We won't address the whole installation process of Apache Spark but you can access all required info from Apache Spark Installation.

After all installations are completed, you can make a quick example like here.

1. Prepare a robotic simulation environment

ROS (Robot Operating System) allows us to design a robotic environment. We will use Turtlebot3, a robot in Gazebo simulation env, to generate data for our use case. Turtlebot3 publishes its data with ROS topics. Therefore, we will subscribe the topic and send data into Kafka.

Run the simulation environment and analysis the data we will use

Turtlebot3 publishes its odometry data with ROS "odom" topic. So, we can see the published data with the given command:

# run the simulation environment
roslaunch turtlebot3_gazebo turtlebot3_world.launch

# check the topic to see data
rostopic echo /odom

You should see a view like the one given below.

header: 
  seq: 10954
  stamp: 
    secs: 365
    nsecs: 483000000
  frame_id: "odom"
child_frame_id: "base_footprint"
pose: 
  pose: 
    position: 
      x: -2.000055643960576
      y: -0.4997879642933192
      z: -0.0010013932644100873
    orientation: 
      x: -1.3486164084605e-05
      y: 0.0038530870521455017
      z: 0.0016676819550213058
      w: 0.9999911861487526
  covariance: [1e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1e-05, 0.0, 0.0, 0.0, 0.0, 0.0,...
twist: 
  twist: 
    linear: 
      x: 5.8050405333644035e-08
      y: 7.749200305343809e-07
      z: 0.0
    angular: 
      x: 0.0
      y: 0.0
      z: 1.15143519181447e-05
  covariance: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...

In this use case, we will just interest the given part of the data:

    position: 
      x: -2.000055643960576
      y: -0.4997879642933192
      z: -0.0010013932644100873
    orientation: 
      x: -1.3486164084605e-05
      y: 0.0038530870521455017
      z: 0.0016676819550213058
      w: 0.9999911861487526

2. Prepare Kafka and Zookeeper environment

The data produced by Turtlebot3 will stored into Kafka clusters.

Prepare Kafka for Use Case

First of all, we will create a new Kafka topic namely odometry for ROS odom data using the given commands:

# Change your path to Kafka folder and then run 
bin/zookeeper-server-start.sh config/zookeeper.properties

# Open second terminal and then run
bin/kafka-server-start.sh config/server.properties

# Create Kafka "odometry" topic for ROS odom data
bin/kafka-topics.sh --create --topic odometry --partitions 1 --replication-factor 1 -bootstrap-server localhost:9092

Then we will write a ROS subscriber to listen to the data from Turtlebot3. Also, since we need to send data to Kafka, it is necessary to add a producer script in it. We will use ros/publish2kafka.py to do it. This script subscribes to the odom topic and sends the content of the topic to Kafka.

import rospy
from nav_msgs.msg import Odometry
import json
from datetime import datetime
from kafka import KafkaProducer

count = 0
def callback(msg):
    global count
    messages={
        "id":count,
        "posex":float("{0:.5f}".format(msg.pose.pose.position.x)),
        "posey":float("{0:.5f}".format(msg.pose.pose.position.y)),
        "posez":float("{0:.5f}".format(msg.pose.pose.position.z)),
        "orientx":float("{0:.5f}".format(msg.pose.pose.orientation.x)),
        "orienty":float("{0:.5f}".format(msg.pose.pose.orientation.y)),
        "orientz":float("{0:.5f}".format(msg.pose.pose.orientation.z)),
        "orientw":float("{0:.5f}".format(msg.pose.pose.orientation.w))
        }

    print(f"Producing message {datetime.now()} Message :\n {str(messages)}")
    producer.send("odometry",messages)
    count+=1

producer = KafkaProducer(
    bootstrap_servers=["localhost:9092"],
    value_serializer=lambda message: json.dumps(message).encode('utf-8')
)

if __name__=="__main__":

    rospy.init_node('odomSubscriber', anonymous=True)
    rospy.Subscriber('odom',Odometry,callback)
    rospy.spin()

You can use ros/readFromKafka.py to check the data is really reach Kafka while ROS and publish2kafka.py is running.

import json
from kafka import KafkaConsumer

if __name__=="__main__":

    consumer=KafkaConsumer(
        "odometry",
        bootstrap_servers="localhost:9092",
        auto_offset_reset="earliest"
    )

    for msg in consumer:
        print(json.loads(msg.value))

3. Prepare Cassandra environment

Prepare Cassandra for Use Case

Initially, we will create a keyspace and then a topic in it using given command:

# Open the cqlsh and then run the command to create 'ros' keyspace
cqlsh> CREATE KEYSPACE ros WITH replication = {'class':'SimpleStrategy', 'replication_factor' : 1};

# Then, run the command to create 'odometry' topic in 'ros'
cqlsh> create table ros.odometry(
        id int primary key, 
        posex float,
        posey float,
        posez float,
        orientx float,
        orienty float,
        orientz float,
        orientw float);

# Check your setup is correct
cqlsh> DESCRIBE ros

#and
cqlsh> DESCRIBE ros.odometry

⚠️ The content of topic has to be the same as Spark schema: Be very careful here!

4. Prepare Apache Spark structured streaming pipeline

You are able to write analysis results to either console or Cassandra.

(First Way) Prepare Apache Spark Structured Streaming Pipeline Kafka to Cassandra

We will write streaming script that read odometry topic from Kafka, analyze it and then write results to Cassandra. We will use spark-demo/streamingKafka2Cassandra.py to do it.

First of all, we create a schema same as we already defined in Cassandra.

⚠️ The content of schema has to be the same as Casssandra table: Be very careful here!

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

Then, we create a Spark Session using two packages:

  • for spark kafka connector : org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0
  • for spark cassandra connector : com.datastax.spark:spark-cassandra-connector_2.12:3.0.0
spark = SparkSession \
    .builder \
    .appName("SparkStructuredStreaming") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0") \
    .getOrCreate()

⚠️ If you use spark-submit you can specify the packages as:

  • spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.0.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0 spark_cassandra.py

In order to read Kafka stream, we use readStream() and specify Kafka configurations as the given below:

df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

Since Kafka send data as binary, first we need to convert the binary value to String using selectExpr() as the given below:

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

Although Apache Spark isn't capable of directly write stream data to Cassandra yet (using writeStream()), we can do it with use foreachBatch() as the given below:

def writeToCassandra(writeDF, _):
  writeDF.write \
    .format("org.apache.spark.sql.cassandra")\
    .mode('append')\
    .options(table="odometry", keyspace="ros")\
    .save()

df1.writeStream \
    .option("spark.cassandra.connection.host","localhost:9042")\
    .foreachBatch(writeToCassandra) \
    .outputMode("update") \
    .start()\
    .awaitTermination()

Finally, we got the given script spark-demo/streamingKafka2Cassandra.py:

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType,StructField,FloatType,IntegerType
from pyspark.sql.functions import from_json,col

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

spark = SparkSession \
    .builder \
    .appName("SparkStructuredStreaming") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0") \
    .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")


df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

df.printSchema()

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

# It is possible to analysis data here using df1


def writeToCassandra(writeDF, _):
  writeDF.write \
    .format("org.apache.spark.sql.cassandra")\
    .mode('append')\
    .options(table="odometry", keyspace="ros")\
    .save()

df1.writeStream \
    .option("spark.cassandra.connection.host","localhost:9042")\
    .foreachBatch(writeToCassandra) \
    .outputMode("update") \
    .start()\
    .awaitTermination()

(Second Way) Prepare Apache Spark Structured Streaming Pipeline Kafka to Console

There are a few differences between writing to the console and writing to Cassandra. First of all, we don't need to use cassandra connector, so we remove it from packages.

spark = SparkSession \
    .builder \
    .appName("SSKafka") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0") \
    .getOrCreate()

With writeStream() we can write stream data directly to the console.

df1.writeStream \
  .outputMode("update") \
  .format("console") \
  .option("truncate", False) \
  .start() \
  .awaitTermination()

The rest of the process takes place in the same way as the previous one. Finally, we got the given script spark-demo/streamingKafka2Console.py:

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType,StructField,LongType,IntegerType,FloatType,StringType
from pyspark.sql.functions import split,from_json,col

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

spark = SparkSession \
    .builder \
    .appName("SSKafka") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0") \
    .getOrCreate()
spark.sparkContext.setLogLevel("ERROR")

df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

df1.writeStream \
  .outputMode("update") \
  .format("console") \
  .option("truncate", False) \
  .start() \
  .awaitTermination()

5. Result

After all the process is done, we got the data in our Cassandra table as the given below:

You can query the given command to see your table:

# Open the cqlsh 
cqlsh
# Then write select query to see content of the table
cqlsh> select * from ros.odometry

Owner
Zekeriyya Demirci
Research Assistant at Eskişehir Osmangazi University , Contributor of VALU3S
Zekeriyya Demirci
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

HoloViz 2.9k Jan 06, 2023
Two phase pipeline + StreamlitTwo phase pipeline + Streamlit

Two phase pipeline + Streamlit This is an example project that demonstrates how to create a pipeline that consists of two phases of execution. In betw

Rick Lamers 1 Nov 17, 2021
MoRecon - A tool for reconstructing missing frames in motion capture data.

MoRecon - A tool for reconstructing missing frames in motion capture data.

Yuki Nishidate 38 Dec 03, 2022
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

Rishikesh S 4 Oct 17, 2022
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance companies

Insurance-Fraud-Claims Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance com

1 Jan 27, 2022
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

JR Oakes 36 Jan 03, 2023
CRISP: Critical Path Analysis of Microservice Traces

CRISP: Critical Path Analysis of Microservice Traces This repo contains code to compute and present critical path summary from Jaeger microservice tra

Uber Research 110 Jan 06, 2023
Instant search for and access to many datasets in Pyspark.

SparkDataset Provides instant access to many datasets right from Pyspark (in Spark DataFrame structure). Drop a star if you like the project. 😃 Motiv

Souvik Pratiher 31 Dec 16, 2022
Big Data & Cloud Computing for Oceanography

DS2 Class 2022, Big Data & Cloud Computing for Oceanography Home of the 2022 ISblue Big Data & Cloud Computing for Oceanography class (IMT-A, ENSTA, I

Ocean's Big Data Mining 5 Mar 19, 2022
Python implementation of Principal Component Analysis

Principal Component Analysis Principal Component Analysis (PCA) is a dimension-reduction algorithm. The idea is to use the singular value decompositio

Ignacio Darago 1 Nov 06, 2021
Bamboolib - a GUI for pandas DataFrames

Community repository of bamboolib bamboolib is joining forces with Databricks. For more information, please read our announcement. Please note that th

Tobias Krabel 863 Jan 08, 2023
Python for Data Analysis, 2nd Edition

Python for Data Analysis, 2nd Edition Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media Buy

Wes McKinney 18.6k Jan 08, 2023
This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

Ishan Hegde 1 Nov 17, 2021
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022
Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Table of contents Introduction Dataset Model & Metrics How to Run Quickstart Install Training Evaluation Detection DATA COMPETITION The COVID-19 pande

Thanh Dat Vu 1 Feb 27, 2022