Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Overview

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv)

This is a Pytorch implementation of our technical report.

Compare

Comparison between the proposed LV-ViT and other recent works based on transformers. Note that we only show models whose model sizes are under 100M.

Training Pipeline

Pipeline

Our codes are based on the pytorch-image-models by Ross Wightman.

LV-ViT Models

Model layer dim Image resolution Param Top 1 Download
LV-ViT-S 16 384 224 26.15M 83.3 link
LV-ViT-S 16 384 384 26.30M 84.4 link
LV-ViT-M 20 512 224 55.83M 84.0 link
LV-ViT-M 20 512 384 56.03M 85.4 link
LV-ViT-L 24 768 448 150.47M 86.2 link

Requirements

torch>=1.4.0 torchvision>=0.5.0 pyyaml timm==0.4.5

data prepare: ImageNet with the following folder structure, you can extract imagenet by this script.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Validation

Replace DATA_DIR with your imagenet validation set path and MODEL_DIR with the checkpoint path

CUDA_VISIBLE_DEVICES=0 bash eval.sh /path/to/imagenet/val /path/to/checkpoint

Label data

We provide NFNet-F6 generated dense label map here. As NFNet-F6 are based on pure ImageNet data, no extra training data is involved.

Training

Coming soon

Reference

If you use this repo or find it useful, please consider citing:

@misc{jiang2021token,
      title={Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet}, 
      author={Zihang Jiang and Qibin Hou and Li Yuan and Daquan Zhou and Xiaojie Jin and Anran Wang and Jiashi Feng},
      year={2021},
      eprint={2104.10858},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Related projects

T2T-ViT, Re-labeling ImageNet.

Comments
  • error: download the pretrained model but couldn't be unzipped

    error: download the pretrained model but couldn't be unzipped

    tar -xvf lvvit_s-26M-384-84-4.pth.tar tar: This does not look like a tar archive tar: Skipping to next header tar: Exiting with failure status due to previous errors

    opened by Williamlizl 10
  • The accuracy of the validation set is 0,and the loss is always around 13

    The accuracy of the validation set is 0,and the loss is always around 13

    Hello! I use ILSVRC2012_img_train and ILSVRC2012_img_val, and use the provided label_top5_train_nfnet from Google Drive. I train lv-vit-s with batch_size 64 without apex for one epoch. Thanks for your advice.

    opened by yifanQi98 7
  • Pretrained weights for LV-ViT-T

    Pretrained weights for LV-ViT-T

    Hi,

    Thanks for sharing your work. Could you also provide the pre-trained weights for the LV-ViT-T model variant, the one that achieves 79.1% top1-acc. as mentioned in Table 1 of your paper?

    All the best, Marc

    opened by marc345 5
  • train error: AttributeError: 'tuple' object has no attribute 'log_softmax'

    train error: AttributeError: 'tuple' object has no attribute 'log_softmax'

    Hi, thanks for you great work. When I train script, some error occurs: AttributeError: 'tuple' object has no attribute 'log_softmax'

    with amp_autocast():   
                output = model(input)  
                loss = loss_fn(output, target)  # error occurs
    
    

    and loss function is train_loss_fn = LabelSmoothingCrossEntropy(smoothing=0.0).cuda()

    by the way: Could you please tell me why we need to specify smoothing=0.0?

    opened by lxy5513 5
  • RuntimeError: CUDA error: device-side assert triggered

    RuntimeError: CUDA error: device-side assert triggered

    I am a green hand of DL. When I run the code of volo with tlt in a single or multi GPU, I get an error as follows: /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:312: operator(): block: [0,0,0], thread: [25,0,0] Assertion idx_dim >= 0 && idx_dim < index_size && "index out of bounds" failed. Traceback (most recent call last): File "main.py", line 949, in main() File "main.py", line 664, in main optimizers=optimizers) File "main.py", line 773, in train_one_epoch label_size=args.token_label_size) File "/opt/conda/lib/python3.6/site-packages/tlt/data/mixup.py", line 90, in mixup_target y1 = get_labelmaps_with_coords(target, num_classes, on_value=on_value, off_value=off_value, device=device, label_size=label_size) File "/opt/conda/lib/python3.6/site-packages/tlt/data/mixup.py", line 64, in get_labelmaps_with_coords num_classes=num_classes,device=device) File "/opt/conda/lib/python3.6/site-packages/tlt/data/mixup.py", line 16, in get_featuremaps _label_topk[1][:, :, :].long(), RuntimeError: CUDA error: device-side assert triggered.

    I can't fix this problem right now.

    opened by JIAOJIAYUASD 4
  • Generating label for custom dataset

    Generating label for custom dataset

    Hello,

    Thank you for sharing your work. I am currently trying to generate token label to a custom dataset for model lvvit_s, but I keep getting the loss close to 7 and the Accuracy 0 (not pre-trained and using 1 GPU in Google Colab). I also tried using the pre-trained model with --transfer but got 0 in both Loss and Acc . What option should I use for a custom dataset? image

    opened by AleMaiaF 2
  • generate_label.py unable to find model lvvit_s

    generate_label.py unable to find model lvvit_s

    Hi,

    When I tried to run the label generation script for the model lvvit_s it returned an error "RuntimeError: Unknown model".

    Solution: It worked when I added the line "import tlt.models" in the file generate_label.py.

    opened by AleMaiaF 2
  • Can Token labeling reach higher than annotator model?

    Can Token labeling reach higher than annotator model?

    Greetings,

    Thank you for this incredible research.

    I would like to know if it is possible to use Token Labeling to achieve scores higher than that of the annotator model, I believe this was the case with VOLO D5 model where it achieved higher score than NFNet, model used for annotation.

    opened by ErenBalatkan 1
  • label_map does not do the same augmentation (random crop) as the input image

    label_map does not do the same augmentation (random crop) as the input image

    Hi Thanks so much for the nice work! I am curious if you could share the insight on processing of the label_map. If I understand it correctly, after we load image and the corresponding, we shall do the same cropping/ flip/ resize, but in https://github.com/zihangJiang/TokenLabeling/blob/aa438eff9b9fc2daa8c8b4cc6bfaa6e3721f995e/tlt/data/label_transforms_factory.py#L58-L73 Seems only image was cropped, but the label map does not do the same cropping, which make the label map not match with the image?

    Shall we do

            return torchvision_F.resized_crop(
                    img, i, j, h, w, self.size, interpolation
            ), torchvision_F.resized_crop(
                    label_map, i / ratio, j / ratio, h / ratio, w / ratio, self.size, interpolation
            )
    

    Thanks

    opened by haooooooqi 1
  • Python3.6, ok; Python3.8, error

    Python3.6, ok; Python3.8, error

    Test: [ 0/1] Time: 11.293 (11.293) Loss: 0.7043 (0.7043) [email protected]: 42.1875 (42.1875) [email protected]: 100.0000 (100.0000) Test: [ 1/1] Time: 0.108 (5.701) Loss: 0.5847 (0.6689) [email protected]: 89.8148 (56.3187) [email protected]: 100.0000 (100.0000) free(): invalid pointer free(): invalid pointer Traceback (most recent call last): File "/opt/conda/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/opt/conda/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/launch.py", line 303, in <module> main() File "/opt/conda/lib/python3.8/site-packages/torch/distributed/launch.py", line 294, in main raise subprocess.CalledProcessError(returncode=process.returncode, subprocess.CalledProcessError: Command '['/opt/conda/bin/python3.8', '-u', 'main.py', '--local_rank=1', './dataset/c/c', '--model', 'lvvit_s', '-b', '128', '--apex-amp', '--img-size', '224', '--drop-path', '0.1', '--token-label', '--token-label-size', '14', '--dense-weight', '0.0', '--num-classes', '2', '--finetune', './pretrained/lvvit_s-26M-384-84-4.pth.tar']' died with <Signals.SIGABRT: 6>. [email protected]:/puxin_libochao/TokenLabeling# CUDA_VISIBLE_DEVICES=0,1 bash ./distributed_train.sh 2 ./dataset/c/c --model lvvit_s -b 128 --apex-amp --img-size 224 --drop-path 0.1 --token-label --token-label-size 14 --dense-weight 0.0 --num-classes 2 --finetune ./pretrained/lvvit_s-26M-384-84-4.pth.tar

    opened by Williamlizl 1
  • A Bag of Training Techniques for ViT

    A Bag of Training Techniques for ViT

    Hi, thanks for your wonderful work. I have a question that whether training techniques mentioned in the LV-Vit can be used in other downstream task like object detection? In your paper, I see that many of this techniques are used in ImageNet. Thanks!

    opened by qdd1234 1
  • how to apply token labeling to CNN ?

    how to apply token labeling to CNN ?

    Hello ~ I'm interested in your token labeling technique, So I want to apply this technique in CNN based model because ViT is very heavy to train.

    can I get the your code with CNN token labeling? if you're not give me some detail for implementing

    thank you.

    opened by HoJ00n2 0
  • Model settings for Cifar10

    Model settings for Cifar10

    I am interested if there is any LV-ViT- model setup you have tested for Cifar10. I would like to know the proper setup of all blocks in none pretrained weights settings.

    opened by Aminullah6264 0
Owner
蒋子航
Now a Ph.D. student supervised by Prof. Feng Jiashi in ECE, NUS.
蒋子航
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021

Texformer: 3D Human Texture Estimation from a Single Image with Transformers This is the official implementation of "3D Human Texture Estimation from

XiangyuXu 193 Dec 05, 2022
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022