Relative Uncertainty Learning for Facial Expression Recognition

Overview

Relative Uncertainty Learning for Facial Expression Recognition

The official implementation of the following paper at NeurIPS2021:
Title: Relative Uncertainty Learning for Facial Expression Recognition
Authors: Yuhang Zhang, Chengrui Wang, Weihong Deng
Institute: BUPT

Abstract

In facial expression recognition (FER), the uncertainties introduced by inherent noises like ambiguous facial expressions and inconsistent labels raise concerns about the credibility of recognition results. To quantify these uncertainties and achieve good performance under noisy data, we regard uncertainty as a relative concept and propose an innovative uncertainty learning method called Relative Uncertainty Learning (RUL). Rather than assuming Gaussian uncertainty distributions for all datasets, RUL builds an extra branch to learn uncertainty from the relative difficulty of samples by feature mixup. Specifically, we use uncertainties as weights to mix facial features and design an add-up loss to encourage uncertainty learning. It is easy to implement and adds little or no extra computation overhead. Extensive experiments show that RUL outperforms state-of-the-art FER uncertainty learning methods in both real-world and synthetic noisy FER datasets. Besides, RUL also works well on other datasets such as CIFAR and Tiny ImageNet.

Pipeline

Feature Visualization

The feature distribution figure shows that RUL encourages intra-class compactness and inter-class seperability of the learned features. (0:Surprise, 1:Fear, 2:Disgust, 3:Happy, 4:Sad, 5:Angry, 6:Neutral)

Train

Torch

We train RUL with Torch 1.8.0 and torchvision 0.9.0.

Dataset

Download RAF-DB, put it into the dataset folder, and make sure that it has the same structure as bellow:

- dataset/raf-basic/
         EmoLabel/
             list_patition_label.txt
         Image/aligned/
	     train_00001_aligned.jpg
             test_0001_aligned.jpg
             ...

Pretrained backbone model

Download the pretrained ResNet18 from this github repository, and then put it into the pretrained_model directory. We thank the authors for providing their pretrained ResNet model.

Train the RUL model

cd src
python main.py --raf_path '../dataset/raf-basic' --label_path '../dataset/raf-basic/EmoLabel/list_patition_label.txt' --pretrained_backbone_path '../pretrained_model/resnet18_msceleb.pth'

Accuracy

Acknowledgments

Our work is based on the following works, thanks for their code and pretrained model:

https://github.com/kaiwang960112/Self-Cure-Network

https://github.com/Ontheway361/dul-pytorch

https://github.com/amirhfarzaneh/dacl

Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022