[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Overview

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction

FaceReconstructionDemo

Language grade: Python License ECCV

Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable 3D Dense Face Alignment via Tensorflow Lite framework, face mesh, head pose, landmarks, and more.

  • CPU real-time face deteciton, alignment, and reconstruction pipeline.
  • Lightweight render library, 5x faster (3ms vs 15ms) than the Sim3DR tools.
  • Camera matrix and dense/sparse landmarks prediction via a single network.
  • Generate facial parameters for robust head pose and expression estimation.

Setup

Basic Requirements

  • Python 3.6+
  • pip3 install -r requirements.txt

Render for Dense Face

  • GCC 6.0+
  • bash build_render.sh
  • (Cautious) For Windows user, please refer to this tutorial for more details.

3D Facial Landmarks

In this project, we perform dense face reconstruction by 3DMM parameters regression. The regression target is simplified as camera matrix (C, shape of 3x4), appearance parameters (S, shape of 1x40), and expression variables (E, shape of 1x10), with 62 dimensions in total.

The sparse or dense facial landmarks can be estimated by applying these parameters to a predefined 3D model, such as BFM. More specifically, the following formula describes how to generate a face through parameters:

Generate Face

where U and W are from pre-defined face model. Combine them linearly with parameters to generate sparse or dense faces. Finally, we need to integrate the posture information into the result:

With matrix

where R (shape of 3x3) and T (shape of 3x1) denote rotation and translation matrices, respectively, which are fractured from the camera matrix C.

Sparse

sparse demo

Since we have reconstructed the entire face, the 3D face alignment can be achieved by selecting the landmarks at the corresponding positions. See [TPAMI 2017] Face alignment in full pose range: A 3d total solution for more details.

Comparing with the method of first detecting 2D landmarks and then performing depth estimation, directly fitting 3DMM to solve 3D face alignment can not only obtain more accurate results in larger pose scenes, but also has obvious advantages in speed.

We provide a demonstration script that can generate 68 landmarks based on the reconstructed face. Run the following command to view the real-time 3D face alignment results:

python3 demo_video.py -m sparse -f <your-video-path>

Dense

dense demo

Currently, our method supports up to 38,365 landmarks. We draw landmarks every 6 indexes for a better illustration. Run the demonstrate script in dense mode for real-time dense facial landmark localization:

python3 demo_video.py -m dense -f <your-video-path>

Face Reconstruction

Our network is multi-task since it can directly regress 3DMM params from a single face image for reconstruction, as well as estimate the head pose via R and T prediction. During training, the predicted R can supervise the params regression branch to generate refined face mesh. Meanwhile, the landmarks calculated via the params are provided as the labeled data to the pose estimation branch for training, through the cv2.solvePnP tool.

Theoretically speaking, the head pose estimation task in our model is weakly supervised, since only a few labeled data is required to activate the training process. In detail, the loss function at the initial stage can be described as follows:

Init Pose Loss

After the initialization process, the ground truth can be replaced by the prediction results of other branches. Therefore, the loss function will be transformed to the following equation in the later stage of the training process:

Pose Loss

In general, fitting the 3D model during the training process dynamically can avoid the inaccurate head pose estimation results caused by the coarse predefined model.

Head Pose

pose demo

Traditional head pose estimation approaches, such as Appearance Template Models, Detector Arrays, and Mainfold Embedding have been extensively studied. However, methods based on deep learning improved the prediction accuracy to meet actual needs, until recent years.

Given a set of predefined 3D facial landmarks and the corresponding 2D image projections, the SolvePnP tool can be utilized to calculate the rotation matrix. However, the adopted mean 3D human face model usually introduces intrinsic error during the fitting process. Meanwhile, the additional landmarks extraction component is also kind of cumbersome.

Therefore, we designed a network branch for directly regress 6DoF parameters from the face image. The predictions include the 3DoF rotation matrix R (Pitch, Yaw, Roll), and the 3DoF translation matrix T (x, y, z), Compared with the landmark-based method, directly regression the camera matrix is more robust and stable, as well as significantly reduce the network training cost. Run the demonstrate script in pose mode to view the real-time head pose estimation results:

python3 demo_video.py -m pose -f <your-video-path>

Expression

Expression

Coarse expression estimation can be achieved by combining the predefined expressions in BFM linearly. In our model, regression the E is one of the tasks of the params prediction branch. Obviously, the accuracy of the linear combination is positively related to the dimension.

Clipping parameters can accelerate the training process, however, it can also reduce reconstruction accuracy, especially details such as eye and mouth. More specifically, E has a greater impact on face details than S when emotion is involved. Therefore, we choose 10-dimension for a tradeoff between the speed and the accuracy, the training data can be found at here for refinement.

In addition, we provide a simple facial expression rendering script. Run the following command for illustration:

python3 demo_image.py <your-image-path>

Mesh

mesh demo

According to the predefined BFM and the predicted 3DMM parameters, the dense 3D facial landmarks can be easily calculated. On this basis, through the index mapping between the morphable triangle vertices and the dense landmarks defined in BFM, the renderer can plot these geometries with depth infomation for mesh preview. Run the demonstrate script in mesh mode for real-time face reconstruction:

python3 demo_video.py -m mesh -f <your-video-path>

Benchmark

Our network can directly output the camera matrix and sparse or dense landmarks. Compared with the model in the original paper with the same backbone, the additional parameters yield via the pose regression branch does not significantly affect the inference speed, which means it can still be CPU real-time.

Scheme THREAD=1 THREAD=2 THREAD=4
Inference 7.79ms 6.88ms 5.83ms

In addition, since most of the operations are wrapped in the model, the time consumption of pre-processing and post-processing are significantly reduced. Meanwhile, the optimized lightweight renderer is 5x faster (3ms vs 15ms) than the Sim3DR tools. These measures decline the latency of the entire pipeline.

Stage Preprocess Inference Postprocess Render
Each face cost 0.23ms 7.79ms 0.39ms 3.92ms

Run the following command for speed benchmark:

python3 video_speed_benchmark.py <your-video-path>

Citation

@inproceedings{guo2020towards,
    title={Towards Fast, Accurate and Stable 3D Dense Face Alignment},
    author={Guo, Jianzhu and Zhu, Xiangyu and Yang, Yang and Yang, Fan and Lei, Zhen and Li, Stan Z},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    year={2020}
}
Comments
  • __init__() got an unexpected keyword argument 'num_threads'

    __init__() got an unexpected keyword argument 'num_threads'

    While running "python3 demo_video.py -m mesh -f I receive the following ERROR: File "demo_video.py", line 53, in main(args) File "demo_video.py", line 16, in main fa = service.DenseFaceReconstruction("weights/dense_face.tflite") File "/home/happy/PycharmProjects/Dense-Head-Pose-Estimation/service/TFLiteFaceAlignment.py", line 11, in init num_threads=num_threads) TypeError: init() got an unexpected keyword argument 'num_threads'

    opened by berylyellow 2
  • asset/render.so not found

    asset/render.so not found

    While running "python3 demo_video.py -m mesh -f I receive the following ERROR OSError: asset/render.so: cannot open shared object file: No such file or directory I can successfully run the other three modes (sparse, dense, pose)

    opened by fisakhan 2
  • How can i get Depth

    How can i get Depth

    hi, I want to get information about the depth of the face, how do I calculate it? i don't need rendering but only need depth map. like https://github.kakaocorp.com/data-sci/3DDFA_V2_tf2/blob/master/utils/depth.py thank you in advance!

    opened by joongkyunKim 1
  • there is no asset/render.so

    there is no asset/render.so

    Ignore above cudart dlerror if you do not have a GPU set up on your machine. Traceback (most recent call last): File "demo_video.py", line 53, in main(args) File "demo_video.py", line 18, in main color = service.TrianglesMeshRender("asset/render.so", File "/home/xuhao/workspace/Dense-Head-Pose-Estimation-main/service/CtypesMeshRender.py", line 17, in init self._clibs = ctypes.CDLL(clibs)

    opened by hitxuhao 1
  • asset/render.so: cannot open shared object file: No such file or director

    asset/render.so: cannot open shared object file: No such file or director

    It worked well with: $ python3 demo_video.py -m pose -f ./re.mp4 $python3 demo_video.py -m sparse -f ./re.mp4 $ python3 demo_video.py -m dense -f ./re.mp4

    but with mesh not as you see here:

    $python3 demo_video.py -m mesh -f ./re.mp4 2022-12-05 17:03:03.713207: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 Traceback (most recent call last): File "demo_video.py", line 55, in main(args) File "demo_video.py", line 21, in main color = service.TrianglesMeshRender("asset/render.so", "asset/triangles.npy") File "/home/redhwan/2/HPE/tensorflow/Dense-Head-Pose-Estimation-main/service/CtypesMeshRender.py", line 17, in init self._clibs = ctypes.CDLL(clibs) File "/usr/lib/python3.8/ctypes/init.py", line 373, in init self._handle = _dlopen(self._name, mode) OSError: asset/render.so: cannot open shared object file: No such file or directory

    opened by Algabri 0
  • Memory usage

    Memory usage

    hi @1996scarlet

    Is it expected that the model uses around 18GB of video RAM? Or does it maximises the RAM available to help with speed? (I got a 24GB ram GPU, and usage goes up to 22.2GB while inferencing) Thanks for this amazing MIT license repo btw.

    opened by Tetsujinfr 0
Releases(v1.0)
  • v1.0(Feb 1, 2021)

    Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction

    • CPU real-time face deteciton, alignment, and reconstruction pipeline.
    • Lightweight render library, 5x faster (3ms vs 15ms) than the Sim3DR tools.
    • Camera matrix and dense/sparse landmarks prediction via a single network.
    • Generate facial parameters for robust head pose and expression estimation.
    Source code(tar.gz)
    Source code(zip)
Owner
Remilia Scarlet
Remilia Scarlet
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Yuliang Guo 233 Jan 06, 2023
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023